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Neurosciences (OCNS)
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e Ben Torben-Nielsen, Blue Brain Project, EPFL, Switzerland

e Taro Toyoizumi, RIKEN Brain Science Institute, Japan

2014 Local Organizers

e Maurice Chacron, McGill University

e Yves de Koninck, Université Laval

Fundraising

OCNS, Inc is a US non-profit, 501(c)(3) serving organization supporting the Computational
Neuroscience community internationally. We seek sponsorship from corporate and philantropic
organizations for support of student travel and registration to the annual meeting, student
awards and hosting of topical workshops. We can also host booth presentations from companies
and book houses. For further information on how you can contribute please email
http://sponsorship@cnsorg.org.
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would be possible.
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Explore Experimental,
Computational, and Theoretical
Approaches to Neuroscience

Catalog no. K12687
October 2012
ISBN: 978-1-4398-5745-8
$135.95/ £86.00

Catalog no. K16831
January 2013
ISBN: 978-1-4665-7832-6
$69.95 / £44.99

y Catalog no. K12042
NE‘N March 2014
ISBN: 978-1-4398-4572-1
$159.95 / £99.00

Get the Latest
Publications
from CRC Press

SAVE 25% when you
order online, enter
FMN34 at checkout.

And remember,
FREE standard

shipping.



Timetable



General Info

Map of the local area

O

The main meeting, as well as all the tutorials and the workshops will all take place at the
Québec City Convention center, 900, boul. René-Lévesque Est (see red circle on the map
above). Located in the heart of Québec City, the Québec City Convention Centre is surrounded
by a remarkable hotel and tourism environment and is steps away from the Parliament
buildings, museums, nightclubs, and attractions like Old Québec and historic Battlefields Park.
Hundreds of shops, boutiques and a variety of restaurants are only minutes away. With free
high-speed wireless Internet access, the Convention Centre offers modern facilities with
personalized service. Note that we have our own reserved entrance on "Avenue Honoré Mercier"
in order to directly access the floorspace that is dedicated to CNS 2014.

Parking If coming by car to the convention center, please use P2 (marked by the red circle
on the map below) as it has an underground tunnel that is directly linked to our entrance.
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At the Meeting Venue

Registration: Hall 2000

Plenary Lectures: Room 2000A

Workshops/tutorials: Rooms 207, 2101, 2102B, 2103, 2104A, 2014B, 2105

Posters: Rooms 2000B/C

11



Money

It is possible to withdraw Canadian dollars at almost any ATM.

Visa and Mastercard are accepted in almost all stores.

Banks are generally open from 9am to 5pm, or 6pm, from Monday to Saturday

All prices do not include taxes (15 %).

It is customary to give a tip (15 %) at restaurants

Language

The official language in Québec is French although although most shop owners, waiters, etc...
will speak english as well.

Useful phone numbers

e Emergency (medical, police, fire, etc...): 911

e Québec city convention center: (418) 644-4000 or 1 (888) 679-4000

Taxi Coop Québec (418) 525-5191

Taxi Coop Sainte-Foy (418) 653-7777

Taxi Laurier (418) 651-2727

Taxi Québec (418) 525-8123



Restaurants: Inexpensive

13 results(s)

Buffet de I'Antiquaire

Q View Map

Korrigane Brasserie Artisanale
® Geo. Area: Borough of La Cité - Limoilou / Downtown
® Type: Restaurants

W Add to my favorites

Located in the bustling Saint-Roch neighbourhood, Korrigane's good
reputation is based on brewing high-quality beer the old-fashioned way.
This bistro/brewery ...

Chez Ashton
® Geo. Area: Borough of La Cité - Limoilou / Downtown
© Type: Snack Bars and Fast Food

W Add to my favorites

For 40 years, Chez Ashton has served food made from top quality
ingredients. Specialties include roast beef sandwiches, hamburgers
made from fresh ground ...

La Barberie, micro-brewery
® Geo. Area: Borough of La Cité - Limoilou / Downtown

© Type: Bars and Discotheques

W Add to my favorites

Located in Québec City, this microbrewery has been creating first-rate
beer since 1997. Wide selection of delicious and exclusive products for
beer lovers ...

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec

W Type: Restaurants
@ Add to my favorites

Tiny neighbourhood restaurant with a friendly family-type atmosphere. Authentic, traditional Québec cuisine
found nowhere else. Fresh produce from the ...

13



Le Petit Cochon Dingue
® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec
W Type: Restaurants

W Add to my favorites

Traditional pastry shop whose desserts have helped establish the
reputation of restaurants like Cochon Dingue, Lapin Sauté, Café du
Monde and Paris Grill. ...

Restaurant Bistro Sous Le Fort

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec

W Type: Restaurants

¥ Add to my favorites

Nestled in Quartier Petit-Champlain, this charming restaurant with

courteous staff boasts a crackling fireplace in the winter, flowery terrace
in the ...

Café-boulangerie Paillard

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec

© Type: Restaurants

W Add to my favorites

An innovative European and North American inspired concept. Bread,

pastries, sandwiches, soup and gelato. Café-Paillard serves delectable
and organic ...

Restaurant L'Omelette

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec

© Type: Restaurants

W Add to my favorites

A wide selection of breakfasts, omelettes and French crépes. Varied

lunch and dinner menu: submarines, pizza, pasta, sandwiches, meat,
fish and mussels. ...

La Cuisine

® Geo. Area: Borough of La Cité - Limoilou / Downtown



ry

_ADVERTISING

W Type: Restaurants

W Add to my favorites

Bistro/bar with a friendly, homelike atmosphere and colourful retro
décor. Homemade food served both day and night. A modern twist to
the traditional ...

Le Chic Shack
® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec
W Type: Restaurants

W Add to my favorites

Burgers, salads, fries, homemade chips and milk shakes. Our burgers
are served on buns baked by local baker Eric Borderon. Gluten-free
bread available...

Pub Saint-Alexandre

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec

W Type: Restaurants

¥ Add to my favorites

English-style pub in the heart of Old Québec. Pub Saint-Alexandre

offers 250 varieties of beer from all over the world, 22 draught beers
and a wide variety ...

Le Cosmos Café
® Geo. Area: Borough of La Cité - Limoilou / Downtown
© Type: Restaurants

¥ Add to my favorites

Restaurant specialty: a selection of 40 different breakfast dishes,
served weekdays from 7 a.m. to 3 p.m., and from 8 a.m. on weekends. A
wholesome menu ...

Page 10of 2
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Restaurants: more expensive

17 results(s)

Feu Sacré Bistro Grill

® Geo. Area: Borough of La Cité - Limoilou / Downtown
W Type: Restaurants

<> Distance: 0.37 km (from Downtown)

W Add to my favorites

Proud partners of the Nouvelle-France Hotels, the Feu Sacré
restaurants propose a different dining concept and atmosphere—but
the same culinary expertise—at ...

Restaurant Beffroi Steak House

® Geo. Area: Borough of La Cité - Limoilou / Downtown

W Type: Restaurants

<> Distance: 0.39 km (from Downtown)

W Add to my favorites

Located in Old Québec, just a few steps away from the Saint-Jean Gate.

The Restaurant Beffroi Steak House has mastered the art of grilling
meat and fish ...

Voodoo Grill

® Geo. Area: Borough of La Cité - Limoilou / Downtown
© Type: Restaurants

<> Distance: 0.42 km (from Downtown)

W Add to my favorites

Savour the excellent cuisine at Québec City's first real Supper Club.
This trendy restaurant has over 150 kinds of tartare to choose from.
After you eat, ...

La Grolla Restaurant Suisse
® Geo. Area: Borough of La Cité - Limoilou / Downtown
W Type: Restaurants
<> Distance: 0.50 km (from Downtown)
@ Add to my favorites
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Charming Swiss café offering Swiss, Chinese and Bourguignon fondues, authentic raclette, seafood and our
AAA filet mignon flambéed with cognac—an absolute ...

Le 47ieme Parallele

® Geo. Area: Borough of La Cité - Limoilou / Downtown
© Type: Restaurants

€ Distance: 0.57 km (from Downtown)

W Add to my favorites

Near the Grand Théatre de Québec and several major hotels.
Distinctive international cuisine served amid stunning urban decor or on
a magnificent terrace. ...

Conti Caffe

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec

© Type: Restaurants

<> Distance: 0.62 km (from Downtown)

W Add to my favorites

Colour, flavour, ambiance, freshness. These are the words that define

the Conti Café, a delightful and brightly decorated restaurant where you
can savour ...

Chez Boulay-bistro boréal

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec
© Type: Restaurants

<> Distance: 0.63 km (from Downtown)

W Add to my favorites

Seasonal Northern cuisine incorporating many locally-made or -grown
foods at this bistro owned by chef Jean Luc Boulay and Arnaud
Marchand. A variety ...

La Crémaillere

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec

W Type: Restaurants

<> Distance: 0.64 km (from Downtown)

© Add to my favorites

After the bustling summer months, time seems to slow down in Old

Québec. As cold days are settling down in the city, the restaurant La
Crémaillere is ...

Restaurant Le Continental

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec
W Type: Restaurants

> Distance: 0.64 km (from Downtown)

17



W Add to my favorites

Québec's oldest gourmet restaurant. Located in a house built in 1845 by
the Honourable Jean-Thomas Taschereau, justice of the Supreme Court
of Canada. ...

Le Charles Baillairgé Resto-bar-lounge

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec
W Type: Restaurants

<> Distance: 0.67 km (from Downtown)

W Add to my favorites

Renowned for its gastronomic excellence, the Charles Baillairgé now
has a new menu featuring contemporary international cuisine. The
service at this Old ...

Restaurant-Pub D'Orsay

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec
W Type: Restaurants

<> Distance: 0.75 km (from Downtown)

W Add to my favorites

Treat yourself to a unique and magnificent setting in the heart of Vieux-
Québec, facing City Hall and Basilique Notre-Dame de Québec. Without
doubt, the ...

Charbon Steakhouse

® Geo. Area: Borough of La Cité - Limoilou / Downtown
© Type: Restaurants

<> Distance: 0.94 km (from Downtown)

W Add to my favorites

AAA beef from Western Canada that is tenderized naturally. Fresh fish
and exotic seafood grilled over wood charcoal the traditional way. You
are sure ...

Page 10of 2
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17 results(s)

Café Sirocco

® Geo. Area: Borough of La Cité - Limoilou / Downtown
W Type: Restaurants

<> Distance: 1.02 km (from Downtown)

W Add to my favorites

Large selecton of tartares. Tapas. Seafood. Entrées. Grilled meat. Fresh
pasta. Martinis. Wine by the glass. A menu in the grand tradition of the
best ...

Le Graffiti

® Geo. Area: Borough of La Cité - Limoilou / Downtown
W Type: Restaurants

<> Distance: 1.04 km (from Downtown)

W Add to my favorites

The Graffiti has everything to please: a welcoming smile, relaxed,
efficient service, warm décor, constantly changing menu, brilliant wine
list. The restaurant ...

L'Echaudé

® Geo. Area: Borough of La Cité - Limoilou / Vieux-Québec
W Type: Restaurants

<> Distance: 1.11 km (from Downtown)

W Add to my favorites

For 30 years, L'Echaudé has been the cornerstone of fine dining in the
Old Port. The relaxed ambience, attentive staff and first-rate wine list
complement ...

Le Clocher Penché Bistrot

® Geo. Area: Borough of La Cité - Limoilou / Downtown
W Type: Restaurants

€ Distance: 1.16 km (from Downtown)

¥ Add to my favorites
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T1

T2

T3

T4

Tutorials

The Neural Engineering Framework (NEF): A General Purpose Method for
Building Spiking Neuron Models

Room 207, 26 Jul 2014
Chris Eliasmith, University of Waterloo, CA, USA

Terrance Stewart, University of Waterloo, CA, USA

Moritz Deger, EPFL, Lausanne, Switzerland

Themes in Computational Neuroendocrinology
Room 2102B, 26 Jul 2014

Joel Tabak, Florida State University, FL, USA

Theory of correlation transfer and correlation structure in recurrent networks
Room 2104A, 26 Jul 2014

Ruben Moreno-Bote, Foundation Sant Joan de Deu, Barcelona, Spain

Modeling and analysis of extracellular potentials
Room 2104B, 26 Jul 2014

Gaute Einevoll, Norwegian University of Life Sciences, As, Norway

Szymon Leski, Nencki Institute of Experimental Biology, Warsaw, Poland

Espen Hagen, Norwegian University of Life Sciences, As, Norway
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TS5

T6

T7

T8

T9

NEURON Simulation Software
Room 2103, 26 Jul 2014

Bill Lytton, SUNY Downstate Medical Center, USA

Constructing biologically realistic neuron and network models with GENESIS
Room 2102B 26 Jul 2014

Hugo Cornelis, University of Texas Health Science Center at San Antonio, USA

Modeling of spiking neural networks with BRIAN
Room 2101, 26 Jul 2014

Romain Brette, Institut de la Vision, Paris, France

Marcel Stimberg, Institut de la Vision, Paris, France

Pierre Yger, Institut de la Vision, Paris, France

Dan Goodman, Harvard Medical School, Boston, USA

Implementing neuron models for the NEST simulator
Room 2103, 26 Jul 2014

Jochen M. Eppler, Research Center Jiilich, Germany

Jannis Schiicker, Research Center Jiilich, Germany

Neuronal Model Parameter Search Techniques
Room 2105, 26 Jul 2014

Cengiz Giinay, Emory University, USA

Anca Dolog-Mihu, Emory University, Atlanta, USA

Vladislav Sekulic, University of Toronto, Canada

Tomasz G. Smolinski, Delaware State University, USA

23



Main Meeting

Saturday July 26

9:00 — 16:30

17:00 — 17:15

17.15 - 18:15 K1

18:15 — 20:00

Tutorials
Welcome and announcements

Keynote 1:

How to build large, multi-scale, functional brain models
Chris Eliasmith

Welcome reception in "Hall 2000"

24



Sunday July 27

9:00 - 9:10

9:10 - 10:10 K2

10:10 — 10:40
10:40 — 11:00
11:00 — 11:20
11:20 — 11:40
11:40 — 12:00
12:00 — 13:30
13:30 — 13:50
13:50 — 14:30

01

02

03

04

05

F1

Announcements

Keynote 2:

Ezxploring Cortex in a High- Throughput Manner by Building Brain
Observatories
Christof Koch

Break

Oral session I: Large Networks

Simulating spiking neural networks on massively parallel graphical
processing units using a code generation approach with GeNN
Esin Yavuz*, James Turner, and Thomas Nowotny

Patterns in network activity and information processing in a de-
tailed computer model of the cerebellar granular layer
Shyam Kumar, Sungho Hong*, and Erik De Schutter

Mean Field Analysis Gives Accurate Predictions of the Behaviour
of Large Networks of Sparsely Coupled and Heterogeneous Neurons
Wilten Nicola*, Felix Njap, Katie Ferguson, Frances Skinner, and Sue Ann
Campbell

FExtracting novel information from neuroimaging data using neural
fields
Dimitris Pinotsis*

Break for lunch

Oral session II: Single-cell modeling

Automatic fitness function selection for compartment model opti-
mization

Timothy Rumbell*,; Danel Draguljic, Jennifer Luebke, Patrick Hof, and
Christina M Weaver

Featured oral 1:

Optical coactivation in cortical cells: reprogrammaing the excitation-
inhibition balancing act to control neuronal gain in abstract and
detailed models

Sarah Jarvis*, Konstantin Nikolic, and Simon R Schultz

Oral session III: Sensation and cognition

25



14:30 — 14:50
14:50 — 15:20
15:00 — 15:20
15:20 — 15:40
16:00 — 19:00

06

o7

08

Predicting neural responses to natural sound in the auditory brain-
stem
Dominika Lyzwa*, J Michael Herrmann

Break

Causal correlation paths across cortical areas in decision making
Adria Tauste Campo*, Marina Martinez-Garcia, Verénica Nacher, Gustavo
Deco, and Ranulfo Romo

Trial-by-trial modeling of electrophysiological signals during in-
verse Bayesian inference
Antonio Kolossa*, Bruno Kopp, and Tim Fingscheidt

Poster session I: Posters P1 — P75, Sponsored by Brain Corpora-
tion
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Monday July 28

9:00 - 9:10

9:10 - 10:10 K3

10:10 — 10:40
10:40 — 11:00
11:00 — 11:20
11:20 — 11:40
11:40 — 12:00
12:00 — 14:00
13:30 — 13:50
13:50 — 14:30
14:30 — 14:50

09

010

011

012

013

F2

014

Announcements

Keynote 3:

In silico Neuroscience: the next era
Henry Markram

Break

Oral session IV: Pattern generation

Parameter correlations maintaining bursting activity
Anca Doloc-Mihu*, Ronald Calabrese

Organization of left-right coordination of neuronal activity in the
mammalian spinal cord locomotor CPG: Insights from computa-
tional modeling

Ilya Rybak*, Natalia Shevtsova, Adolfo Talpalar, Sergey Markin, Ronald
Harris-Warrick, and Ole Kiehn

Oral session V: Synaptic plasticity

Determinants of gain modulation enabled by short-term depression
at an inhibitory cerebellar synapse.
Dimitris Bampasakis*, Reinoud Maex, Neil Davey, and Volker Steuber

Stable reinforcement learning via temporal competition between
LTP and LTD traces
Marco Huertas*, Sarah Schwettmann, Alfredo Kirkwood, and Harel Shouval

Break for lunch

Oral session VI: Network topology and dynamics

Neural graphs: Small-worlds, after all?

Michelle Rudolph-Lilith*, Lyle Muller

Featured oral 2:

Network community, clusters and hubs in cortical micro circuits.
Masanori Shimono*, John M Beggs

A k-population model to calculate the firing rate of neuronal net-
works with degree correlations
Christian Schmeltzer*, Alexandre Kihara, Igor Sokolov, and Sten Ridiger
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14:50 — 15:20 Break

15:20 — 15:40 O15 Criticality in cortical ensembles is supported by complex functional
networks
Paolo Massobrio*, Valentina Pasquale, and Sergio Martinoia

15:40 — 16:00 O16 The interplay of intrinsic excitability and network topology in spa-
tiotemporal pattern generation in neural networks.
James Roach*, Leonard Sander, and Michal Zochowski

16:00 — 19:00 Poster session 1I: Posters P76 — P150, Sponsored by Brain Corpo-
ration
19:00 CNS Party at "Chez Maurice"
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Tuesday July 29

9:00 — 9:10 Announcements

9:10 — 10:10 K4 Keynote 4:

Balancing and Tight Coupling: An approach to determine dynamic
mechanisms of biological brain networks
Frances K Skinner

10:10 — 10:40 Break

Oral session VII: Pathological activity

10:40 — 11:20 F3 Featured oral 3:

Inhibitory single neuron control of seizures and epileptic traveling
waves tn humans

Omar Ahmed*, Mark Kramer, Wilson Truccolo, Jason Naftulin, Nicholas
Potter, Emad Eskandar, Garth Cosgrove, Andy Blum, Leigh Hochberg, and
Sydney Cash

11:20 — 11:40 O17 Synchronization of the Parkinsonian Globus Pallidus by Gap Junc-
tions
Bettina Schwab*, Hil Meijer, Richard van Wezel, and Stephan van Gils

11:40 — 12:00 O18 The dynamic separation of pallidal neurons into anti-phase oscil-
latory groups under Parkinsonian conditions in a computational
model
Robert Merrison-Hort*, Roman Borisyuk

12:00 — 13:30 Break for lunch

13:30 — 14:20 OCNS Member Meeting

Oral session VIII: Chaos

14:20 — 14:40 O19 The sleeping brain regulates to the edge of chaos
Moira Steyn-Ross*, Alistair Steyn-Ross, and Jamie Sleigh

14:40 — 15:00 O20 Chaos in heterogeneous neural networks
Merav Stern*, Johnatan Aljadeff, and Tatyana Sharpee

15:00 — 15:30 Break

29



15:30 — 18:30 Poster session III: Posters P151 — P225, Sponsored by Brain Cor-

poration
18:30 — 19:00 Time to walk to banquet location (15 min walk)
19:00 Banquet at "La Chapelle du Musée"
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Wednesday July 30

9:00 - 19:00

Workshops

Thursday July 31

9:00 - 19:00

Workshops

31



Workshops

Cortical Oscillations: Computational models and dynamic mechanisms
Room 207, W, Th

Horacio Rotstein, New Jersey Institute of Technology

Mark Kramer, Boston University

W2

W3

Computational methods and modeling of Astrocyte pyhsiology and Neuron-
glia interactions

Room 2103, W, Th

Hugues Berry, INRIA
Maurizio De Pitta, University of Chicago

Methods of Information Theory in Computational Neuroscience
Room 2101, W, Th

Michael C Gastpar, Laboratory for Information in Networked Systems, EPFL and
UC Berkeley

Conor Houghton, Department of Mathematics, Trinity College Dublin

Simon R Schultz, Department of Bioengineering, Imperial College

Tatyana O Sharpee, The Computational Neurobiology Laboratory, Salk Institute

32



W5

W6

w7

W8

W9

W10

Running parallel simulations on HPC resources via the Neuroscience Gateway
Portal

Room 2102B, W
Amit Majumdar, UCSD
Ted Carnevale, Yale School of Medicine

Resonance and Entrainment: From Dynamic Systems Theory to Targeted
Brain Stimulation

Room 2104B, W
Flavio Frolich, University of North Carolina at Chapel Hill

Methods of System Identification for Studying Information Processing in Sen-
sory Systems

Room 2105, W

Aurel A Lazar, Department of Electrical Engineering, Columbia University

Mikko I Juusola,

Dynamics of Disease States
Room 2104A, W

Jonathan Rubin, University of Pittsburgh

Stephan Van Gils, University of Twente

Sleep Rhythms and Memory Consolidation
Room 2102B, Th

Maxim Bazhenov, UC Riverside

Igor Timofeev, Laval University

Basal Ganglia: Structure, dynamics and function
Room 2104B, Th

Arvind Kumar, Bernstein Center Freiburg, University of Freiburg, Germany

Jeanette Hellgren Kotaleski, Royal Institute of Technology, Stockholm, Sweden

Large-scale brain structure and dynamics
Room 2105, Th

Jorge F Mejias, NYU

Xiao-Jing Wang,

33



W11 Finite-size fluctuations in neural systems - from ion channels to networks

W12

Room 2104A, Th

Richard Naud, University of Ottawa, Canada
Tilo Schwalger, EPFL, Switzerland

Moritz Deger, EPFL, Switzerland

Student /Post-doc career Workshop
Room 2101, W (6-8 PM)

Jorge F Mejias, NJIT
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Tutorials

T1  The Neural Engineering Framework (NEF): A General Purpose Method for
Building Spiking Neuron Models

Room 207, 26 Jul 2014

Chris , University of Waterloo, CA, USA

Terrance Stewart, University of Waterloo, CA, USA
Moritz Deger, EPFL, Lausanne, Switzerland

We have recently created the world’s largest biologically plausible brain model that is capable
of performing several perceptual, motor, and cognitive tasks (Eliasmith et al., 2012). This model
uses 2.5 million spiking neurons, takes visual input from a 28x28 pixel visual field, and controls
a physically modelled arm. It has been shown to match a wide variety of neurophysiological
and behavioral measures from animals and humans performing the same tasks. This tutorial is
meant to introduce the software toolkit (Nengo) and theoretical background (NEF) to allow other
researchers to use the same methods for exploring a wide variety of brain functions. We will focus
on the underlying theory of the Neural Engineering Framework (NEF; Eliasmith and Anderson,
2003), a general method for implementing large-scale, nonlinear dynamics using spiking neurons.
Our emphasis will be on building such models using a GUI and scripting in our open-source
toolkit Nengo (). We will help participants construct networks that perform linear and non-
linear computations in high dimensional state spaces, including arbitrary attractor networks
(point, line, cyclic, chaotic), controlled oscillators and filters, and winner-take-all networks. We
will discuss both how the networks can be learned online with a spike-based learning rule, or
more efficiently constructed. If time permits, the tutorial will introduce our Semantic Pointer
Architecture (Eliasmith, 2013), encapsulated in a Python module for Nengo which can be used
to rapidly implement large-scale cognitive models that include (basic) visual processing, motor
control, working memory, associative memory, and cognitive control.
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Audience

All participants are encouraged to bring a laptop for installing and running Nengo (Linux,
OS X, and Windows versions are provided), allowing for hands-on interactions with the models
discussed.
References:
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New York, NY: Oxford University Press.

[2] Eliasmith, C., & Anderson, C. (2003). Neural Engineering: Computation, Representation,
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T2 Themes in Computational Neuroendocrinology
Room 2102B, 26 Jul 2014

Joel Tabak, Florida State University, FL, USA

Computational neuroendocrinology regroups the various efforts, at different levels of organi-
zation, to better understand neuroendocrine regulations using computational models. Neuroen-
docrine systems are organized in ’endocrine axes’. Each axis includes neuronal populations in the
hypothalamus, cells in the pituitary gland that releases one or multiple hormones, and the target
organ of this particular set of hormones.

Computational models describe the activity of hypothalamic neurons and how these neuroen-
docrine cells regulate the activity of pituitary cells that secrete hormones such as growth hormone,
prolactin, luteinizing hormone, etc. They may also describe how hormones released by target
organs in response to pituitary hormones, such as steroids, feedback and affect hypothalamo-
pituitary regulations. One recurring theme is to understand how these regulations can produce
pulsatile patterns of hormone secretion, and how target cells interpret these pulsatile patterns.

In this tutorial we will present examples of models that illustrate important themes in computa-
tional neuroendocrinology. These models range from the single cell level to the network level and,
further, to the multi organ level. They will emphasize some key features of the neuroendocrine
systems: endocrine cells have wide action potential and bursts that rely more on Ca2+ than Na+
voltage-dependent channels; the main transmitters of neuroendocrine regulations are not binding
to receptor-channels but to G-protein coupled receptors that trigger second messenger cascades,
leading to protein phosphorylation or gene expression; as a result neuroendocrine regulations do
not operate at the millisecond time scale but at much slower time scales, from seconds to days.

T3 Theory of correlation transfer and correlation structure in recurrent networks
Room 2104A, 26 Jul 2014

Ruben Moreno-Bote, Foundation Sant Joan de Deu, Barcelona, Spain

In the first part, we will study correlations arising from pairs of neurons sharing common
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fluctuations and/or inputs. Using integrate-and-fire neurons, we will show how to compute the
firing rate, auto-correlation and cross-correlation functions of the output spike trains. The trans-
fer function of the output correlations given the inputs correlations will be discussed. We will
show that the output correlations are generally weaker than the input correlations [Moreno-
Bote and Parga, 2006], that the shape of the cross-correlation functions depends on the working
regime of the neuron [Ostojic et al., 2009; Helias et al., 2013|, and that the output correlations
strongly depend on the output firing rate of the neurons [de la Rocha et al, 2007]. We will study
generalizations of these results when the pair of neurons is reciprocally connected.

In the second part, we will consider correlations in recurrent random networks. Using a binary
neuron model [Ginzburg & Sompolinsky, 1994|, we explain how mean-field theory determines
the stationary state and how network-generated noise linearizes the single neuron response. The
resulting linear equation for the fluctuations in recurrent networks is then solved to obtain the
correlation structure in balanced random networks. We discuss two different points of view of the
recently reported active suppression of correlations in balanced networks by fast tracking [Renart
et al., 2010] and by negative feedback |Tetzlaff et al., 2012]. Finally, we consider extensions of
the theory of correlations of linear Poisson spiking models [Hawkes, 1971| to the leaky integrate-
and-fire model and present a unifying view of linearized theories of correlations [Helias et al,
2011].

At last, we will revisit the important question of how correlations affect information and vice-
versa [Zohary et al, 1994| in neuronal circuits, showing novel results about information content
in recurrent networks of integrate-and-fire neurons [Moreno-Bote and Pouget, Cosyne abstracts,
2011].
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T4 Modeling and analysis of extracellular potentials
Room 2104B, 26 Jul 2014

Gaute Einevoll, Norwegian University of Life Sciences, As, Norway

Szymon Leski, Nencki Institute of Experimental Biology, Warsaw, Poland

Espen Hagen, Norwegian University of Life Sciences, As, Norway

While extracellular electrical recordings have been the main workhorse in electrophysiology,
the interpretation of such recordings is not trivial [1,2,3]. The recorded extracellular potentials
in general stem from a complicated sum of contributions from all transmembrane currents of
the neurons in the vicinity of the electrode contact. The duration of spikes, the extracellular
signatures of neuronal action potentials, is so short that the high-frequency part of the recorded
signal, the multi-unit activity (MUA), often can be sorted into spiking contributions from the
individual neurons surrounding the electrode [4]. No such simplifying feature aids us in the
interpretation of the low-frequency part, the local field potential (LFP). To take a full advantage
of the new generation of silicon-based multielectrodes recording from tens, hundreds or thousands
of positions simultaneously, we thus need to develop new data analysis methods grounded in the
underlying biophysics [1,3,4]. This is the topic of the present tutorial.

In the first part of this tutorial we will go through

e the biophysics of extracellular recordings in the brain,

e a scheme for biophysically detailed modeling of extracellular potentials and the application
to modeling single spikes [5-7|, MUAs [8] and LFPs, both from single neurons [9] and
populations of neurons [8,10,11|, and

e methods for

— estimation of current source density from LFP data, such as the iCSD [12-14] and
kCSD methods [15], and

— decomposition of recorded signals in cortex into contributions from various laminar
populations, i.e., (i) laminar population analysis (LPA) [16,17] based on joint modeling
of LFP and MUA, and (ii) a scheme using LFP and known constraints on the synaptic
connections [18]

38



In the second part, the participants will get demonstrations and, if wanted, hands-on experience
with

e LFPy (software.incf.org/software/LEFPy) [19], a versatile tool based on Python and the
simulation program NEURON [20] (www.neuron.yale.edu/) for calculation of extracellular
potentials around neurons, and

e tools for iCSD analysis, in particular,

— CSDplotter (for linear multielectrodes [8]) software.incf.org/software/csdplotter
— CSD 2D (for 2D multishank electrodes [14]) software.incf.org/software/icsd-2d

Further, new results from applying the biophysical forward-modelling scheme to predict LFPs
from comprehensive structured network models, in particular

e the Traub-model for thalamocortical activity [21], and

e the Potjans-Diesmann microcircuit model for a visual cortical column [22,23], will be pre-
sented.
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T5 NEURON Simulation Software

Room 2103, 26 Jul 2014
Bill Lytton, SUNY Downstate Medical Center, USA

This half-day tutorial will focus on several new features that have been added recently to
the NEURON simulator environment, as well as highlighting older features that have had recent
upgrades. Questions are encouraged during each talk and during time set aside at end of each

talk.

Presentations will include the following:

1.

2.

Use of NEURON for multiscale modeling (Bill Lytton)

Use of the Python interpreter to work with hoc/nrniv objects (Sam Neymotin)
Reaction-diffusion (RxD) modeling techniques in NEURON (Robert McDougal)

=== Coffee Break ====

Cell level modeling for synaptic distribution and current source density (Bill Lytton)
Design of large networks (Cliff Kerr)

NEURON interfacing: robots, sense inputs, mean fields models (Salvador Dura-Bernal)
Modelview to evaluate and use modelDB to build your own sim (Robert McDougal)

Discussion, questions, further examples..

T6 Constructing biologically realistic neuron and network models with GENESIS

Room 2102B, 26 Jul 2014
Hugo Cornelis, University of Texas Health Science Center at San Antonio, USA

This tutorial is aimed at people who are new to or have only elementary knowledge about the
GENESIS-2 simulator, as well as those who have used GENESIS in the past and would like to
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learn of new developments in cortical network modeling with GENESIS. After a quick overview
of the GENESIS project [1], the tutorial demonstrates methods for single neuron modeling. Tt
then continues with the use of the GENESIS neural simulator for the efficient modeling of large
networks of biologically realistic neurons. The tutorial ends with a summary about the recent
development of functionality for modeling spike-timing dependent plasticity in network models
that include realistic neuronal morphology and axonal conduction delays for the delivery of action
potentials.

The tutorial is a guide to the use of the CNS 2014 release of the Ultimate GENESIS Tutorial
Distribution [2|. This is a newly updated version of a self-paced course on biologically realistic
modeling in general, and creating simulations with GENESIS in particular. This package contains
the full GENESIS 2.3 distribution, as well as recent patches that will be incorporated into the
GENESIS 2.4 release later this year. It includes materials used by several recent international
courses on neural modeling as well as new cortical network simulation examples with tutorial
documentation. It comes with suggested exercises for independent study.

This tutorial should give you everything that you need to get started modeling with GENESIS,
and to develop your own simulations starting from these examples.
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T7 Modeling of spiking neural networks with BRIAN
Room 2101, 26 Jul 2014

Romain Brette, Institut de la Vision, Paris, France
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Pierre Yger, Institut de la Vision, Paris, France
Dan Goodman, Harvard Medical School, Boston, USA

Brian [1,2] is a simulator for spiking neural networks, written in the Python programming
language. It focuses on making the writing of simulation code as quick as possible and on flexi-
bility: new and non-standard models can be readily defined using mathematical notation|3]. This
tutorial will be based on Brian 2, the current Brian version under development.

In the morning, we will give an introduction to Brian and an overview of the existing Brian
extensions (brian hears [4], model fitting toolbox [5], compartmental modelling). In the after-
noon, more advanced topics (extending Brian; code generation|5|, including the generation of
"standalone code"; contributing to Brian) will be covered.
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T8 Implementing neuron models for the NEST simulator
Room 2103, 26 Jul 2014

Jochen M. Eppler, Research Center Jiilich, Germany

Jannis Schiicker, Research Center Jiilich, Germany

The neural simulation tool NEST [1, www.nest-initiative.org] is a simulator for heterogeneous
networks of point neurons or neurons with a small number of electrical compartments aiming
at simulations of large neural systems. It is implemented in C+-+ and runs on a large range of
architectures from single-processor desktop computers to large clusters and supercomputers with
thousands of processor cores.

This tutorial is for researchers who are interested in the implementation of new neuron models
for NEST in an efficient way. We will start with a more technical description of the scheduler,
the parallelization facilities, and the neuron base class in NEST and continue with an in-depth
discussion of the internals of an existing neuron model in NEST.

It is helpful if NEST or another simulator for spiking neuronal networks has been used previously
and if the basic knowledge about neuronal modeling in general is present. Some programming
background in C++ is beneficial but not required.

References:

[1] BMarc-Oliver Gewaltig and Markus Diesmann (2007) NEST (Neural Simulation Tool),
Scholarpedia 2 (4), p. 1430.

T9 Neuronal Model Parameter Search Techniques
Room 2105, 26 Jul 2014
Cengiz Giinay, Emory University, USA
Anca Dolog-Mihu, Emory University, Atlanta, USA

Vladislav Sekulic, University of Toronto, Canada

Tomasz G. Smolinski, Delaware State University, USA

Parameter tuning of model neurons to mimic biologically realistic activity is a non-trivial
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task. Multiple models may exhibit similar dynamics that match experimental data — i.e., there
is no single ’correct’ model. To address this issue, the ensemble modeling technique proposes
to represent properties of living neurons with a set of neuronal models. Several approaches to
ensemble modeling have been proposed over the years, but the two most prevalent parameter
tuning methods are systematic 'brute-force’ searches |1, 2| and various evolutionary algorithms-
based techniques [3, 4, 5, 6]. Both approaches relay on traversing a very large parameter space
(with thousands to millions of model instances), but utilize diametrically different ways to accom-
plish that. In both cases, however, entire collections of biologically realistic models are generated,
whose neural activity characteristics can then be cataloged and studied using a database [1, 2.
The tutorial covers ’tips and tricks,” as well as various pitfalls in all stages of model construction,
large-scale simulations on high performance computing clusters [S2|, database construction and
analysis of neural data, along with a discussion about the strengths and weaknesses of the two
parameter search techniques. We will review software implementations for each technique: PAN-
DORA Matlab Toolbox [7][S1] for the brute force method and NeRvolver (i.e., evolver of nerve
cells) for evolutionary algorithms. PANDORA was used in recent projects for tuning models of rat
globus pallidus neurons [2|[M1], lobster pyloric network calcium sensors [8][M2], leech heart in-
terneurons [9]|M3,S3] and hippocampal O-LM interneurons (Skinner Lab, TWRI/UHN and Univ.
Toronto). NeRvolver is a prototype of a computational intelligence-based system for automated
construction, tuning, and analysis of neuronal models, which is currently under development in
the Computational Intelligence and Bio (logical) informatics Laboratory at Delaware State Uni-
versity [10]. Through the utilization of computational intelligence methods (i.e., Multi-Objective
Evolutionary Algorithms and Fuzzy Logic), the NeRvolver system generates classification rules
describing biological phenomena discovered during the process of model creation or tuning. Thus
in addition to producing neuronal models, NeRvolver providesa€‘“via such rulesa€“insights into
the functioning of the biological neurons being modeled. In the tutorial, we will present basic
functionalities of the system and demonstrate how to analyze the results returned by the software.
We will allocate enough time for Q& A and if participants bring a laptop pre-loaded with Matlab,
they can follow some of our examples.
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Model and Software Links:

e Rat globus pallidus neuron model
(https://senselab.med.yale.edu/modeldb /ShowModel.asp?model=114639)

Lobster stomatogastric ganglion pyloric network model
(http://senselab.med.yale.edu/Model DB /showmodel.asp?model=144387)

Half-center oscillator database of leech heart interneuron model
(http://senselab.med.yale.edu/Model DB /ShowModel.asp?model=144518)

PANDORA Matlab Toolbox
(http:/ /software.incf.org/software /pandora)

Parallel parameter search scripts for simulating neuron models
(https://github.com/cengique /param-search-neuro)

Half-Center Oscillator model database (HCO-db)
(http://www.biology.emory.edu/research /Calabrese/hco-db/hcoDB_Main.html)
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Invited Presentations

Chris Eliasmith

Dept of Philosophy

Dept of Systems Design Engineering

Canada Research Chair in Theoretical Neuroscience,
University of Waterloo, ON, Canada

K1 — How to build large, multi-scale, functional brain models

Recently, several large-scale brain models have been presented, including those from the Hu-
man Brain Project and IBM’s Synapse Project. However, these large, complex models do not
exhibit interesting psychological (i.e., motor, perceptual, and cognitive) behaviors. Consequently,
they are difficult to compare to much of what we know about the brain. In this talk, I describe
the methods (e.g., the Neural Engineering Framework) and tools (e.g., Nengo (http://nengo.ca))
used to construct what is currently the largest *functional® brain simulation. This model is called
the Semantic Pointer Architecture Unified Network (Spaun) and uses 2.4 million spiking neurons
organized to respect known anatomical and physiological constraints. I demonstrate the variety
of behaviors the model exhibits and show that it is similar in many respects to human and animal
behaviour. I show how Spaun allows comparison of the model to data across scales and across
measurement modalities (e.g. spike trains, reaction times, error rates). I argue that constructing
such large-scale simulations that permit this broad range of comparison to data is critical for
advancing our understanding of neural and cognitive function, and I suggest that it helps to unify
our understanding of how the mind works.
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Christof Koch
Allen Institute for Brain Science,
Seattle, WA, USA

K2 — Exploring Cortex in a High-Throughput Manner by Building
Brain Observatories

The Allen Institute for Brain Science has, over the past ten years, produced a series of
brain atlases (www.brain-map.org). These are large (3 TB, >1 million slides) public resources,
integrating genome-wide gene expression, and neuroanatomical data across the entire brain for
developing and adult humans, non-human primates and mice, complemented by high-resolution,
cellular-based anatomical connectivity data in several thousand mice. It is the single largest
integrated neuroscience database world-wide. Anybody can freely access this data without any
restrictions.

We are embarked on an ambitious 10-year initiative to understand the structure and function
of the neocortex and associated satellite structures in humans and mice. We are setting up
high through-put pipelines to exhaustively characterize the morphology, electrophysiology and
transcriptome of cell types as well as their synaptic interconnections in the human neocortex (via
a combination of fetal, neurosurgical and post-mortem tissues & human stem cells differentiated
into forebrain neurons) and in the laboratory mouse. We are building brain observatories to
image the activities of neurons throughout the cortico-thalamic system in behaving mice, to
record their electrical activities, and to analyze their connectivity at the ultra-structural level.
We are constructing biophysically detailed as well as simplified computer simulations of these
networks and of their information processing capabilities. In keeping with the Allen Institute for
Brain Science’s core value of open science, all data, knowledge and tools from this initiative will
be shared with the broader scientific community.
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Henry Markram
EPFL,
Lausanne, Switzerland

K3 — In silico Neuroscience: the next era

I claim that mapping the brain using only experimental approaches is intractable and provide
a predictive, algorithmic reconstruction strategy that uses sparse data as a companion approach
to make it tractable. A first draft detailed anatomical and physiological map of a prototypical
neocortical microcircuit will be presented. The microcircuit is 0.28 mm? in volume and contains
31,000 neurons belonging to 55 morphological neuron types and 207 morpho-electrical sub-types
distributed across 6 layers. The reconstruction predicts: the number of neurons of each type
per layer (the neurome) with around 7.5 million intrinsic and 27 million extrinsic connections
forming around 40 and 141 million synapses, respectively (the connectome); the detailed anatomy
and physiology of 2,258 unique synaptic pathways between neurons of different morphological
types, 31,628 unique pathways between neurons of different morpho-electrical types, 600 intra-
laminar and 1,658 inter-laminar pathways; and the complete map of intrinsic synapses for all
neurons (their synaptomes). In silico simulations of the reconstructed microcircuit provide novel,
simple and standardized measures of microcircuit behaviour and the computational role of any
component of the microcircuit. The study demonstrates that a dense structural and functional
mapping of the brain is in principle tractable and officially marks the beginning of the era of in
silico neuroscience.
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and University of Toronto,
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N

K4 — Balancing and Tight Coupling: An approach to determine dy-
namic mechanisms of biological brain networks

Without a doubt, it is an extremely challenging endeavour to understand how our brains
work. Oscillatory output, as produced by brain networks, has been shown to be important for
brain functioning. Due to the high degree of sophistication and technical expertise required
in experimentation, modeling, computation and analyses, it is clear that to move forth in our
understanding, open and interactive collaborations between several individuals and disciplines
are required.

In this talk, I will discuss our developing approach to determine essential features and mecha-
nisms for the generation of rhythmic, population output in microcircuits of the hippocampus. Due
to its importance in learning and memory, as well as its association with pathological conditions,
the hippocampus is a heavily studied brain structure. Furthermore, evidence is accumulating
that pathological states are associated with particular changes in normal rhythmic activities.
Through collaborative efforts, we have developed and are developing cellular and network mod-
els with tight experimental linkages. We are using them to identify critical cellular and synaptic
aspects of dynamic mechanisms that can be examined in biological microcircuits. Overall, we
aim to use our models to determine dynamic mechanisms used by biological microcircuits (from
which one could consider building macrocircuits) and to use them to gain insight into disease
mechanisms.
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Contributed Talks

F1 Optical coactivation in cortical cells: reprogramming the excitation-inhibition
balancing act to control neuronal gain in abstract and detailed models

Sarah Jarvis'*, Konstantin Nikolic??, and Simon R Schultz?

! Department of Bioengineering, Imperial College, London SW7 2AZ UK
2 Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Im-
perial College, London SW7 2AZ UK

The interplay of excitatory and inhibitory activity in neuronal populations is finely regulated
within cortical layers, with their imbalance being heavily implicated as the underlying cause for
many neurological disorders, such as autism, schizophrenia and epilepsy. A key regulatory mech-
anism is gain modulation, in which the amplitude of response changes while the cell’s selectivity
remains unaffected. Previous work has addressed gain modulation by examining the interplay of
excitatory and inhibitory input at the soma [1]. However, given the non-linear integration that
occurs in dendritic arbors, it remains unclear how gain is modulated when the input is located
at synaptic locations.

For investigating and manipulating this balance of activity throughout the entire neuronal
morphology, optogenetics is a powerful tool due to the fine temporal and spatial precision it pro-
vides [2]. Furthermore, due to the development of excitatory opsins, such as Channelrhodopsin-
2 (ChR2), that depolarize neuronal membrane and silencing opsins, including halorhodopsin
(NpHR), that hyperpolarize the membrane, disjoint subdomains of the dendritic and soma mor-
phology can be targeted. This capability has recently been furthered by the development of
co-activated opsins, such as ChR2-NpHR |[3], which allow independent excitation and inhibition
within the same neural population due to the different preferential excitation wavelengths of
each opsin (A = 490, 585nm for ChR2 and NpHR respectively). Together, these opsins provide a
potential window through which to examine the interplay of competing excitatory and inhibitory
inputs for differing spatial and temporal patterns of activation.

We demonstrated previously that gain modulation in a detailed model of a Layer 5 Pyramidal
cell using co-activated opsins is possible but highly dependent on the dendritic subdomains
targeted [4,5], with whole cell illumination necessary to illicit gain modulation. In contrast,
partial illumination of only the apical dendrites and soma resulted in no gain modulation. This
suggests a strong link between potential for gain modulation and neuron morphology. While this
result helps to untangle the relative contribution of excitatory and inhibitory influences, and
warns of inadvertent errors when shallow illumination occurs experimentally.

We investigate this relation by first testing optical activation in abstracted neuron morpholo-
gies that include models of ChR2 and NpHR. By creating a family of neural morphologies that
extend a simple ball-and-stick neuron model, we investigate how uni-, bi- and multi-polar neu-
rons vary gain modulation upon partial illumination. External driving input is provided as both
current injection and as multiple synaptic-like events at locations on dendrites, rather than the
soma, to mimic input conditions for both in vitro and in vivo experiments. Using these models,
we identify optimal illumination strategies for each morphological class of neuron, and predict
how robust neuronal response is upon partial illumination. Finally, we test detailed neuron mor-
phologies, including stellate interneurons, to test the predictions made by our abstract models.
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Our results highlight the role of dendritic subdomains and the localized contribution of ex-
citatory and inhibitory activity in gain modulation. Importantly, our model allows us to predict
experimental illumination strategies that are tailored to neuronal morphology and are robust to
any limitations that can occur experimentally.
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Networks of cortical neurons are essentially non-random [1|. Although it is known that such
networks show interesting structure at multiple temporal and spatial scales [2], almost no ex-
perimental work has been done to reveal how structures at these different scales relate to each
other.

This study aimed to clarify important relations between non-randomness in groups of 3-6
neurons (clusters) and non-randomness in groups of 50-100 neurons (communities) through five
steps. First, we recorded spontaneous activity of up to 500 neurons from rodent somatosensory
cortex using a 512ch. multi-electrode system over one hour [3|. Second, we reconstructed effective
connectivity using transfer entropy [4]. Third, we compared topologies of effective networks at the
3-6 neuron scale (clusters including motifs [Figurel-B]) with topologies of synaptic connections
measured from 12 neuron simultaneous patch clamp experiments [5,6]. Fourth, we constructed
community or modular structures representing non-randomness from larger groups of neurons
[Figurel-D]|. Fifth, we evaluated the extent to which structure at each of these scales was robust.
We did this by swapping connections from high degree nodes (hubs) with those from low degree
nodes (non-hubs).
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We found three things. First, the degree-distribution followed a power-law This demonstrated
that hubs could not have been the result of random sampling from a Gaussian distribution.
Second, effective networks consisting of hundreds of cortical neurons have distinctive non-random
structures of connectivity at two different scales. Third, structure at the cluster level was relatively
more fragile than structure at the community level. The difference between non-randomness
evaluated by cluster and community will become the important first step to understand multiple
different scales of cortical neuronal networks.

Figure 1: (A) An example of spatial distribution of neurons and effective connections. Different
markers indicate different communities. The biggest two communities are covered by blue and red
regions. Upper-right yellow region is an example cluster of 6 neurons. (B) Examples of clusters
of 3-6 neurons. (C) An illustration of community structures. Connections are relatively denser
among neurons within each community and sparser between neurons in different communities.
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Inhibitory neuronal activity is critical for the normal functioning of the brain, but is thought
to go awry during neurological disorders such as epilepsy. Animal models have suggested both
decreased and increased inhibition as possible initiators of epileptic activity, but it is not known if,
or how, human inhibitory neurons shape seizures. Here, using large-scale recordings of neocortical
single neurons in patients with secondarily generalized tonic-clonic seizures, we show that fast-
spiking (F'S) inhibitory activity first increases as a seizure spreads across the neocortex, impeding
and altering the spatial flow of fast epileptic traveling waves. Unexpectedly, however, FS cells
cease firing less than half-way through a seizure. We use biophysically-realistic computational
models to show that this cessation is due to F'S cells entering depolarization block as a result
of extracellular potassium accumulation during the seizure and not because they are inhibited
by other inhibitory subtypes. Strikingly, this absence of FS inhibitory activity is accompanied
by dramatic increases in local seizure amplitude along with unobstructed traveling waves and is
seen during all secondarily generalized seizures examined, independent of etiology or focus. FS
cessation also leads to prominent spike-and-wave events, suggesting that 'S cell dynamics control
the transition between the tonic and clonic phases of these seizures. Thus, it may be possible
to curtail human seizures by preventing inhibitory neurons from entering potassium-dependent
depolarization block, a novel and potentially powerful therapeutic avenue in treating multiple
kinds of epilepsies.
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A major challenge in computational neuroscience is to achieve high performance for real-time
simulations of full size brain networks. Recent advances in GPU technology provide massively par-
allel, low-cost and efficient hardware that is widely available on the computer market. However,
the comparatively low-level programming that is necessary to create an efficient GPU-compatible
implementation of neuronal network simulations can be challenging, even for otherwise experi-
enced programmers. To resolve this problem a number of tools for simulating spiking neural
networks (SNN) on GPUs have been developed [1,2]|, but using a particular simulator usually
comes with restrictions to particular supported neuron models, synapse models or connectivity
schemes. Besides being inconvenient, this can unduly influence the path of scientific enquiry.

Here we present GeNN (GPU enhance neuronal networks), which builds on NVIDIA’s com-
mon unified device architecture (CUDA) to enable a more flexible framework. CUDA allows
programmers to write C-like code and execute it on NVIDIA’s massively parallel GPUs. How-
ever, in order to achieve good performance, it is critical but not trivial to make the right choices
on how to parallelize a computational problem, organize its data in memory and optimize the
memory access patterns. GeNN is based on the idea that much of this optimization can be cast
into heuristics that allow the GeNN meta-compiler to generate optimized GPU code from a basic
description of the neuronal network model in a minimal domain specific language of C function
calls. For further simplification, this description may also be obtained by translating variables,
dynamical equations and parameters from an external simulator into GeNN input files. We are
developing this approach for the Brian 2 [3] and SpineCreator/SpineML [4] systems.

Using a code generation approach in GeNN has important advantages: 1. A large number
of different neuron and synapse models can be provided without performance losses in the fi-
nal simulation code. 2. The generated simulator code can be optimized for the available GPU
hardware and for the specific model. 3. The framework is intrinsically extensible: New GPU
optimization strategies, including strategies of other simulators, can be added in the generated
code for situations where they are effective. The first release version of GeNN is available at
http://sourceforge.net/projects/genn. It has been built and optimized for simulating neuronal
networks with an anatomical structure (separate neuron populations with sparse or dense con-
nection patterns with the possibility to use some common learning rules).

We have executed performance and scalability tests on an NVIDIA Tesla C2070 GPU with an
Intel Xeon(R) E5-2609 CPU running Ubuntu 12.04 LTS. Our results show that as the network
size increases, GPU simulations never fail to outperform CPU simulations. But we are also
able to demonstrate the performance limits of using GPUs with GeNN under different scenarios
of network connectivity, learning rules and simulation parameters, confirming the that GPU
acceleration can differ largely depending on the particular details of the model of interest.
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In the cerebellar cortex, the granular layer is at the first stage of processing information from
other brain regions delivered via mossy fibers. The major components of this neural network are
numerous and tiny granule cells (GrC), which are the only excitatory neurons, and Golgi cells
(GoC) that provide the only inhibitory inputs to GrCs. Despite such structural simplicity, many
questions about their functions remain unanswered.

Here we investigate the signal transformation property of the granular layer neural network
with our three-dimensional large-scale and detailed computer model, composed of the biophysi-
cally detailed 8 x 105 GrC and 2000 GoC models with their physiological synaptic and electrical
connectivity. With background and constant mossy fiber inputs, the model shows network-wide
oscillations driven by the synchronized GoC firing, as in previous simulation and experimental
studies [1-3]. Oscillation frequency was usually higher than the Golgi cell-firing rate, as some
GoCs exhibited cycle skipping. With more physiological and diverse paradigms of mossy fiber
stimulation, we could observe interesting patterns which hint that this oscillation and rate coding
synergistically contribute to the network outputs. For example, when the mossy fiber stimulation
is spatially limited, there is anti-correlation in the GrC spike count between the stimulated and
unstimulated region, suggesting center-surround “receptive fields” [4], while the oscillation persists
and opens time windows for well-timed spikes [5] (Fig. 1). Our results suggest how the complex
dynamics of the granular layer network due to cellular and synaptic properties can contribute to
its rich information processing.
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Figure 1: Cross-correlogram between the average GrC activity within the stimulated and unstim-
ulated region (diameter of each region = 200 pm, distance = 500 pm). The stimulated region
was given high frequency mossy fiber input of 20 Hz and 50 Hz, each lasting 300 ms. The spike
trains were formed with a 1 ms bin, while the rate is evaluated with a 100 ms time window.
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Large networks of integrate-and-fire (IF') model neurons are often used to simulate and study
the behaviour of biologically realistic networks. However, to fully study the large network be-
haviour requires an exploration of large regions of a multidimensional parameter space. Such
exploration is generally not feasible with large network models, due to the computational time
required to simulate a network with biologically significant size. To circumvent these difficulties
we use a mean-field approach, based on the work of [1].

We consider a sparsely coupled, excitatory network of 10,000 Izhikevich model neurons [2],
with Destexhe-type synapses [3]. The cellular models were fit to hippocampal CA1 pyramidal
neurons and have heterogeneous applied currents with a normal distribution. We derived a mean-
field system for the network which consists of differential equations for the mean of the adaptation
current and the synaptic conductance.

As CALl is an area that displays prominent theta oscillations [4], we used the mean-field
system to study how the frequency of bursting depends on various model parameters. Figure 1A
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shows an example study. These studies were successful in guiding numerical simulations of the
large network. When parameter values determined from the mean-field analysis are used in a
large network simulation, bursting of the predicted frequency occurs (Figure 1B).

Figure 1: (Left) Mean-field prediction of the bursting frequency as a function of the unitary
synaptic conductance and the mean applied current. (Right) Simulation of a network of 10,000
neurons with unitary conductance 0.058 nS and mean current 250 pA, showing an oscillation in
the theta frequency range as predicted by the mean-field system of equations.
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This talk will introduce new links between the theory of differential equations and the analysis
of neuroimaging data. We will focus on a class of population models called neural fields: these
are models of how the brain is wired [1| and how it responds in different experimental conditions,
which embody topographic features of cortical sources [2]. We will demonstrate how neural fields
can be used to interpret brain responses measured with electrophysiology [3]. The inversion of such
models is based upon Bayesian techniques and provides estimates of biologically and functionally
meaningful quantities among different experimental conditions.

Neural fields model current fluxes as continuous processes on the cortical sheet, using partial
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differential equations (PDEs). The key advance that neural field models offer, over other popu-
lation models (like neural masses), is that they embody spatial parameters (like the density and
extent of lateral connections). This allows one to model responses not just in time but also over
space. Conversely, these models are particularly useful for explaining observed cortical responses
over different spatial scales; for example, with high-density recordings, at the epidural or intra-
cortical level. However, the impact of spatially extensive dynamics is not restricted to expression
over space but can also have profound effects on temporal (e.g., spectral) responses at one point
(or averaged locally over the cortical surface)|4]. This means that neural field models may also
play a key role in the modelling of non-invasive electrophysiological data that does not resolve
spatial activity directly.

We will shed light on different uses of neural fields and put forward three reasons why these
models can be useful in the analysis of neuroimaging data. Each of these motivations is demon-
strated by analysing a particular dataset obtained using three different modalities: electrocor-
ticography (ECoG), magnetoencephalography (MEG) and local field potential recordings (LFPs).
We will argue that neural fields allow one to: (i) compare evidences for alternative hypotheses
regarding the important neurobiological determinants of stimulus-specific response variability|5];
(ii) make inferences about between subject variability in cortical function and microstructure
using non-invasive data [6] and (iii) obtain estimates of spatial parameters describing cortical
sources in the absence of spatially resolved data [7].

Our analyses exploit dynamic causal modelling [8] and include model space explorations that
embody different hypotheses about the generation of observed responses in relation to model
evidence - obtained using Variational Bayes [9]. This model comparison uses a variational free-
energy bound to furnish optimized models in a manner similar to fitting empirical spectra with AR
and ARMA models, see e.g.[10]. The advantage this approach has over other optimization criteria
is that it provides an optimal balance between model fit and complexity; yielding models that
are both parsimonious and accurate. The analyses presented here showcase particular instances
where neural field models serve as a mathematical microscope, allowing us to extract information
that is hidden in electrophysiological data.
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During normal aging, layer 3 pyramidal neurons of the rhesus monkey prefrontal cortex (PFC)
exhibit significant morphological changes, as well as higher action potential firing rates in vitro
[1]. Computational modeling of individual neurons can provide insight into the ionic mecha-
nisms underlying the increased excitability, which are currently unknown. A unique database of
electrophysiological recordings and morphologic reconstructions from the same neurons, gathered
through whole-cell patch clamp recording, confocal microscopy and 3D digital tracing, constrains
the models. Initial modeling of six young and six aged neurons demonstrated that morphological
features alone do not account entirely for the electrophysiological changes with aging [2]. It is
now necessary to explore the parameter space of passive cable properties and active membrane
channel conductances and kinetics, to uncover parameter combinations that reproduce the firing
patterns observed in neurons of each age group.

Differential Evolution (DE) is an evolutionary optimization method capable of identifying
a population of candidate models throughout parameter space that closely match empirically
observed firing patterns. The quality of fit achieved by an optimization is reliant on the ‘fitness
functions’ used to measure the accuracy of the model. Previous neuronal compartment modeling
studies using parameter optimization have introduced multiple types of fitness measurement 3],
but have not described a general method to determine weights for each type. Here we introduce
a novel method for automatically establishing weights of minimally correlated fitness functions,
and apply it to optimization of models of young and aged PFC neurons. First, a Latin hyper-
cube design (< 1000 points) provides a space-filling sampling of parameter space; the candidate
fitness functions are then evaluated at each of these points. Second, clusters of fitness functions
that are highly correlated across the hypercube are pruned to leave one representative member.
Third, a principal component analysis of the remaining fitness functions across the hypercube
identifies a set of fitness functions representing most of the variability in the parameter space,
which are selected for use in the optimization. Fourth, weights for each selected fitness function
are calculated based on the combination of coefficients for principal components and variance
explained by those components. Finally, DE is conducted on the Neuroscience Gateway [4] using
this automatically constructed optimization protocol.

We demonstrate the method with a compartment model comprising a simplified pyramidal
neuron morphology and three ion channels, optimized to data from representative young and aged
neurons. Compared to a manual approach involving iterative generation of fitness functions, our
novel method produces better fitting models using a tenth of the computation time. Future
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work will extend the automatic protocol generation to prioritize which parameters to optimize,
a critical step as more ion channels are added to the model to improve fitness. This method
will be used to generate morphologically detailed models of 20+ young and aged PFC neurons,
predicting which ionic mechanisms underlie age-related physiological changes.
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The inferior colliculus is the main processing station in the auditory midbrain and integrates
projections from nearly all ascending brainstem nuclei. Apart from being a converging station,
the central nucleus of the inferior colliculus (ICC) is essential for extracting time-varying spec-
trotemporal information [1] and therefore might be important for processing complex sounds
such as speech and vocalizations. The ICC has been the target for a human auditory prosthesis
[2], which might benefit from model predictions of the neural response in the ICC to incoming
sound. Natural sounds such as speech and vocalizations, which display a wide spectrum of acous-
tic properties, such as harmonics, correlations, amplitude and frequency modulations and are
very well suited to study the auditory system.

This study is based on several sets of multi-unit activity recorded simultaneously from 32
sites in the contralateral ICC of guinea pigs while acoustically presenting a diverse set of con-
specific vocalizations to the right ear. Recordings were taken either along the tonotopic gradient
using double-shank electrodes or within iso-frequency lamina using double-tetrode electrodes.We
investigated predictive power of several models of temporal responses in the ICC to vocaliza-
tions and artificial sound. The tested models include 1) a modified version of the physiologically
detailed Meddis Model [4], which was altered in order to match spiking threshold in the guinea
pig ICC and to include adaptation effects and output the trial-averaged spiking responses, the
peri-stimulus time histograms (PSTH), 2) a generalized linear model and 3) a filtering model
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with a bandpass filter of 1/3 octaves around the best frequency, with subsequent normalization
and rectification for each unit, followed by spatial filtering for nearby units. Predictive power was
evaluated by means of the correlation value of the envelope of the PSTHs from the predicted and
the experimentally obtained responses.

We find that our relatively simple, filtering approach yields surprisingly good overlap of
predicted and measured responses for some multi-units, but has poor predictive power for other
units. The models (1-2) yield overall better overlap for the whole set of vocalizations but do
not perform optimally in predicting the temporal course of the response. Our findings indicate
distributions of optimal predictive power in the inferior colliculus over a large best frequency
range across and within isofrequency laminae.
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We study how neural spike activity encode, integrate and communicate information across
different brain areas. An ideal paradigm to study this problem is the vibrotactile discrimination
task designed by Romo et al. [1]. This is a complex process, which requires communicating
information from the sensory areas that perceive the tactile stimuli to superior areas that integrate
this sensory information and report the decision. Previous works on this task have characterized
the role played by sensory and motor areas using the correlation between single-neuron rate
responses and the task variables, namely the two stimulation frequencies and the decision [2]. In
the present work, we investigate the causal correlations that arise between nearby and distant
cells while the monkey is performing the task under fixed stimulation frequencies.

To this end, we use simultaneous multiple-cell recordings to estimate causal across five corti-
cal areas (S1, S2, SMA, DPC and M1) over the time course of the discrimination task. Causal
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correlations are estimated with a sequential universal estimator of the directed information based
on the context-tree weighting algorithm [3|[4]. Statistical tests on the estimates for four stim-
ulation frequency pairs suggest that significant causal correlations (‘causal paths’) are highly
distributed across the studied cortical areas and are equally present in feedforward and feedback
interactions between sensory and motor areas. Furthermore, the percentage of incoming causal
paths is steady during the time course of the task for destination areas S2, SMA, DPC and
M1 while it decays during the stimulation periods for S1. The task-specificity of these results
is assessed by a control task, where the monkey receives both stimuli but it is requested not to
perform the task. Specifically, during the passive stimulation task there is an abrupt decrease in
the number of causal correlations after the first stimulation, which is shown to be independent
of the spike-train variability of each area.

Conclusions: Neuronal causal correlation paths that are specific to the discriminations task
are ubiquitous, bidirectional and remain approximately constant along the task in both sensory
and motor areas. These findings are robust to the stimulation pair under study and the spike-train
variability of each area.
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Empirical support for the Bayesian brain hypothesis, although of major theoretical importance
for cognitive neuroscience, is surprisingly scarce. The literature still lacks definitive functional
neuroimaging evidence that neural activities code and compute Bayesian probabilities. Here, we
introduce a new experimental design to relate electrophysiological measures to Bayesian inference.
Specifically, an urns-and-balls paradigm was used to study neural underpinnings of probabilistic
inverse inference. Event-related potentials (ERPs) were recorded from human participants who
performed the urns-and-balls paradigm, and computational modeling was conducted on trial-by-
trial electrophysiological signals. Five computational models were compared with respect to their
capacity to predict electrophysiological measures. One Bayesian model (BAY) was compared
with another Bayesian model which takes potential effects of non-linear probability weighting
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into account (BAYS). A predictive surprise model (TOPS) of sequential probability revisions
was derived from the Bayesian models. A comparison was made with two published models of
surprise (DIF [1] and OST [2]).

Subsets of the trial-by-trial electrophysiological signals were differentially sensitive to model
predictors: The anteriorly distributed N250 was best fit by the DIF model, the BAYS model
provided the best fit to the anteriorly distributed P3a, whereas the posteriorly distributed P3b
and Slow Wave were best fit by the TOPS model. Figure 1 shows the model fit in log-Bayes factor
[3] as scalp maps for the BAYS and TOPS models for P3a and P3b time windows, respectively.
Table 1 summarizes the model comparison by translating the log-Bayes factors to posterior model
probabilities [4] for all models and all ERPs at the respective time windows and electrodes. These
results show that dissociable cortical activities code and compute different aspects of Bayesian
updating. However, these activities might be best described as being Bayes optimal, implying
that they reflect Bayesian inference, modulated by non-linear probability weighting, as originally
conjectured by prospect theory [5,6].

ERP waves and electrodes

N250 P3a P3b SW
Model C4 FCz Pz 01
OST 0.02 <0.01 <0.01 <0.01
DIF 0.66 <0.01 <0.01 <0.01
TOPg 0.28 <0.01 0.88 0.82
BAY <0.01 <0.01 <0.01 <0.01
BAY 4 0.04 0.99 0.12 0.18

Table 1: Posterior model probabilities

Figure 1: Scalp maps of averaged log-Bayes factors of models with non-linear probability weighting
versus a null model. A. Bayesian surprise model (BAYg). B. Predictive surprise model (TOPg).
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In this study, we focused on the role of correlated conductances in the robust maintenance of
functional bursting activity. Recent experimental and computational studies suggest that linearly
correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern
generating (CPG) neurons to produce and maintain their rhythmic activity regardless of changing
internal and external conditions. However, the mechanisms that allow multiple parameters to
interact, thereby producing and maintaining rhythmic network activity, are less clear.

For our study, we used our existing database (HCO-db) [1] of instances of a half center oscilla-
tor (HCO) model [2|. The HCO single-compartment conductance-based model 2] consists of two
mutually inhibitory neurons and replicates the electrical activity of the oscillator interneurons
of the leech heartbeat CPG under a variety of experimental conditions. From the database, we
identified functional activity groups of isolated neuron and half-center oscillator (HCO) model in-
stances and realistic subgroups of each such group that showed burst characteristics (principally
period and spike frequency) similar to the animal. To find linear correlations among the conduc-
tance parameters maintaining functional leech bursting activity, we applied Principal Component
Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances
(leak current, Greqr; a persistent K current, ggo; and a persistent Na™ current, gp) that correlate
linearly for the two groups of regular and realistic isolated neuron instances (Figure 1 A). Our 3D
visualizations of HCO instances (Figure 1 B) in the reduced space of Grear, gr2, and gp suggested
that there might be a non-linear relationships between parameters for these instances.
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Figure 1: Plots of the groups of instances in the 3D space given by the grcar, Gi2, and gp maximal
conductances. A. Realistic isolated neurons (83 points; 307 instances); B.Realistic HCOs (243
points; 99,066 instances); C. Realistic and regular/ not realistic isolated neurons (83 realistic vs.
91 regular points) and their ODR lines, magenta for realistic and cyan for regular.

A least square fit regression line (3D Orthogonal Distance Regression (ODR) line) to each
group of isolated neurons (Figure 1 C) showed a tendency for the realistic instances to be at the
high values on all axes and a tendency of the regular/not realistic instances to be at the low
and middle values on all axes. From our analysis, it appears that none of the greqr, gx2, Or gp
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parameters is sufficient by itself to produce regular and realistic isolated neuron instances, but
they must work together (in linear combination) in almost equal amounts towards producing the
respective instances. Experimental studies have shown that period is a key attribute influenced
by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the
sensitivity of period to changes in maximal conductances of Greqr, g2, and gp, and we found
that for our realistic isolated neurons the effect of these parameters on period could not be
assessed because when varied individually bursting activity was not maintained. Current studies
are focused on determining which parameters can, when varied, smoothly control period, while
maintaining bursting activity.
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Different gaits of locomotion in mammals are based on the appropriate coordination of neu-
ronal activity in the spinal cord controlling movements of left and right limbs. This left-right
coordination is provided in the spinal cord by the commissural interneurons (CINs) whose axons
cross the midline and affect neural circuits on the contralateral side of the cord. Several types
of CINs have been genetically identified, including the excitatory V3 CINs and the inhibitory
(V0p) and excitatory (V0y) VO CINs. Talpalar et al. [1] recently demonstrated that (a) ablation
of both VO CIN types leads to a left-right synchronized, “hopping” activity at all locomotor fre-
quencies, whereas (b) selective ablation of the excitatory V 0y CINs maintains alternation at low
frequencies but switches to synchronized activity at high frequencies while (c¢) ablation of only
the inhibitory V0p CINs leads to a lack of left-right alternation at low frequencies, but maintains
alternation at high frequencies. The genetically identified, ipsilaterally projecting excitatory V2a
interneurons are recruited with an increase in locomotor speed [2] and contribute to left-right
alternation at high locomotor frequencies [3,4]. Our objective was to construct and analyze a
computational model of the bilaterally interacting central pattern generators (CPGs) that could
reproduce and explain these findings.

In our model, the CPG on each side of the cord consisted of flexor and extensor half-centers.
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Each neural population, including the half-centers and CIN populations, consisted of 50-200
neurons modeled in the Hodgkin-Huxley style. The intrinsic bursting of CPG neurons was based
on a persistent sodium current in these neurons.

During model construction, we assumed that left-right coordination of activity depends on
the balance between the three CIN pathways providing interactions between the left and right
CPGs: the V3-mediated pathway that supports left-right synchronization and the V0p- and
V0y- mediated pathways that provide left-right alternation. The activity of each (left and right)
inhibitory V0p population was driven by the ipsilateral flexor half-center. The recruitment of
VO0p neurons was progressively reduced with an increase in locomotor speed, because of the
reduction of burst amplitude. The left and right V' 0y pathways could be organized in two ways:
(1) the VOy activity on each side was driven by the ipsilateral flexor half-center and its action
on contralateral circuits was mediated by an inhibitory population, or (2) the V0 activity was
driven by the ipsilateral extensor half-center and it excited the contralateral circuits. In any case,
the VOy activation was mediated by the ipsilateral V2a neurons progressively recruited with
increasing locomotor speed.

The model demonstrates: (1) a left-right alternating pattern under control conditions; (2) a
synchronized hopping pattern at any frequency after removing both the VO populations; (3) a
synchronized pattern at low frequencies with alternation at high frequencies after removing the
VOp populations; (4) an alternating pattern at low frequencies with synchronized hopping at
high frequencies after removing either V0 or V2a populations. The model closely reproduces
and suggests an explanation for the experimental data of Talpalar et al. [1], Zhong et al. 2],
and Crone et al. [3,4], proposes the organization of commissural interactions in the spinal cord
defining the left-right alternation at different locomotor speeds, and generates predictions for
future experimental investigations.
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Neurons adapt rapidly the slope, also known as gain, of their input-output function to time-
varying conditions. Gain modulation is a prominent mechanism in many brain processes, such
as auditory processing and attention scaling of orientation tuning curves. It is known to amplify
neuronal signals, prevent firing saturation, and play a key role in coordinate transformation [1].

Synaptic short-term depression (STD) at the excitatory synapse from mossy fibres (MFs) to
granule cells in the cerebellum has previously been found to introduce a gain change, and enhance
inhibition-mediated gain modulation [2|. Similar results were discovered for STD at the inhibitory
synapse from Purkinje cells (PCs) to cerebellar nucleus (CN) neurons, where STD modulates gain
and enhances excitation-mediated gain modulation [3]. In both cases — whether STD is applied
at the excitatory or inhibitory synapse, respectively — the non-linearity introduced by STD in
the relationship between input firing rate and average conductance, was found to underlie the
effects of STD.

We use a multi-compartmental model of a cerebellar nucleus neuron [4] to understand how
STD at an inhibitory synapse can add a multiplicative component in the transformation per-
formed by excitatory input. To do so, we use input from PCs, applied at an inhibitory synapse
with STD, and excitatory input from MFs, while changing the level of STD by manipulating the
presynaptic release probability (R) [5]. We find that gain modulation resulting from the introduc-
tion of STD increases with the extent of depression. To further our understanding, we investigate
the effects of STD using synchronous input, regular input, and their combination. We find that
the multiplicative component introduced by STD remains, but varies in value for different input
conditions. Moreover, we present a detailed analysis of how a non-linear mapping between input
spike rate and synaptic conductance can result in multiplicative operations.
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Neuronal systems that are involved in reinforcement learning must solve the temporal credit
assignment problem, i.e., how is a stimulus associated with a reward that is delayed in time?
Theoretical studies [1,2,3] have postulated that neural activity underlying learning ‘tags’ synapses
with an ‘eligibility trace’, and that the subsequent arrival of a reward converts the eligibility traces
into actual modification of synaptic efficacies. While eligibility traces provide one simple solution
to the temporal credit assignment problem, they alone do not constitute a stable learning rule
because there is no other mechanism indicating when learning should cease. In order to attain
stability, rules involving eligibility traces often assume that once the association is learned, further
learning is prevented via an inhibition of the reward stimulus [1,3,4].

Although synaptic plasticity is responsible for reinforcement learning in the brain, theories of
reinforcement learning are generally abstract and involve neither neurons nor synapses. Further-
more, biophysical theories of synaptic plasticity typically model unsupervised learning and ignore
the contribution of reinforcement. Here we describe a biophysically based theory of reinforcement-
modulated synaptic plasticity and postulate the existence of two eligibility traces with different
temporal profiles: one corresponding to the induction of LTP, and the other to the induction of
LTD. The traces have different kinetics and their difference in magnitude at the time of reward
determines if synaptic modification will correspond to LTP or LTD. Due to the difference in
their decay rates, the LTP and LTD traces can exhibit temporal competition at the reward time
and thus provides a mechanism for stable reinforcement learning without the need to inhibit
reward. We test this novel reinforcement-learning rule on an experimentally motivated model of
a recurrent cortical network [5], and compare the model results to experimental results at both
the cellular and circuit levels. We further suggest that these eligibility traces are implemented
via kinases and phosphatases, thus accounting for results at both the cellular and system levels.
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In recent years, small-world graphs have gained considerable interest as models of real-world
systems, which often display features residing between regularity and randomness. The most
notable of these models is the Watts-Strogatz graph [1], though alternatives have been proposed
[2]. The unifying characteristics of these models are that any two nodes are joined with a small
number of links between them (i.e. short path length), while at the same time connected node
pairs exhibit an abundance of triangular relations resulting in a high degree of local redundancy
(i.e. high clustering).

Theoretical investigations of small-world graph models have generally applied asymptotic
evaluations in the limit of large system size [3] or the continuum approximation [4] to the algo-
rithmic definition of the graph, in the absence of an analytic representation. In this study, we
introduce a generative model of directed small-world graphs, a canonical model of Watts-Strogatz
digraphs, and propose an approach that yields the graph’s defining adjacency matrix in algebraic
terms, with the goal to provide mathematically rigorous access to the study of finite-size small-
world graphs [5]. The proposed approach makes use of random annihilation operators whose
algebraic properties can be utilized to assess algebraically well-defined graph-theoretic measures
in an analytically exact framework, valid nonasymptotically for all graph sizes. We demonstrated
the application of our approach by calculating, for the first time, the asymmetry index and total
clustering coefficient of small worlds in an exact fashion.

We then utilize the exact nonasymptotic expression for the clustering coefficient in order to
assess the small-worldness of structural brain networks in an analytic setting. Using the number
of nodes and edges of the given brain networks to construct the equivalent small-world network,
we observe that a significant edge rewiring of at least 20% up to 60% is required to produce
the small-worldness indices observed in these networks. Importantly, the maximum of the small-
worldness index however occurs in all cases at one order of magnitude lower than the required
rewiring found. This result suggests that neural graphs reside far away from the small-world
regime of the Watts-Strogatz model.
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Revealing the interplay of structure and function of the brain is one of the most intriguing
topics in neuroscience. The theory of complex networks is a promising approach to this aim, where
one assumes that high cognitive processes arise as emergent properties of a network, in which
many inane neurons are connected by a complex topology [1]. In this regard, we analyze analyt-
ically the emerging responses of networks with increasingly complex connectivity. We present a
mathematical theory to calculate the firing rate of a network of leaky integrate-and-fire neurons,
taking into account network features such as degree distributions and degree correlations (Fig. 1).
Heterogeneous connectivity and degree correlations have been shown to heavily influence network
function and dynamics |2, 3]. Our method is to divide the neuronal network in k-populations ac-
cording to the number k of afferent synaptic links that connect to the neuron. Then, the steady
state firing rates for these coupled populations can be calculated self-consistently. One of our
main findings is that the population heterogeneity yields substantial deviations from mean-field
calculations, where one ignores the network properties [4]. Importantly, our analysis shows that
networks with assortative degree correlations lead to firing patterns even for sub-threshold in-
puts, where an uncorrelated network would not fire and thus, to a much larger sensitivity to
low stimuli (Fig. 2). Using information theory we further find an optimum in assortativity, with
larger levels reducing again sensitivity for signal ensembles.

Figure 1: Schematic of the complex neural network. In the uncorrelated network (A), highly
connected neurons (red dots) and poorly connected neurons (blue dots) are joined randomly. In
the network with assortative degree correlations (B), neurons with similar connectivity are joined
preferably. The network firing rate r is the response to a Poissonian external input current with
rate s, which is injected into each neuron.
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Figure 2: Firing rate of a heterogeneous network of integrate and fire neurons with in-degree
correlations. Simulation results (dots) and theoretical predictions (lines). The assortative network
shows sustained activity for very small stimuli.
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Complex network topologies represent the necessary substrate to support complex brain func-
tion. It is widely recognized that the topological features of cortical networks are tightly linked
to aspects of brain function by supporting which electrophysiological patterns can and cannot
occur.

In this work, we investigated the interplay between network topology and spontaneous dy-
namics within the framework of neuronal avalanches and self-organized criticality (SOC) [1]. The
main goal of this study is to sustain the hypothesis that the emergence of critical states, which
in their turn would optimize functional properties in the cortex, is supported by specific complex
network topologies. Experimental evidences showed that dissociated cortical assemblies coupled
to Micro-Electrode Arrays (MEAs) can exhibit scale-free distributions of neuronal avalanches [2],
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a hallmark of SOC, thus demonstrating that they preserve self-organization properties featured
by in vivo-formed cell assemblies [3|. However, the determinants of the emergence of differ-
ent dynamical states (critical, subcritical or supercritical) remain unclear. Here, we adopted a
reverse-engineering approach, by making use of an in silico neuronal network model reproduc-
ing the spiking and bursting activity of biological networks to explore the relationship between
connectivity and dynamics. In our computational network model, connectivity is known a prior:
and thus it is possible to establish interdependencies between the avalanche distributions and the
actual connectivity. Network topologies were designed following the canonical architectures of
scale-free, random, and small-world graphs [4]. We simulated the spontaneous activity, by sweep-
ing the most common parameters used to characterize these graphs, such as clustering coefficient,
connection density, synaptic weight distributions, etc. [5]. From the simulations, we found that:
(i) random networks only showed super-critical dynamics in a physiologically relevant domain of
activity parameters (e.g. firing rate); (ii) scale-free and small-world architectures may account
for the variability observed in the experimental data and the transition from subcriticality to
criticality is ruled by the degree of ’small-worldness’; (iii) excitation and inhibition should be
appropriately balanced to allow for criticality [6].
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016 The interplay of intrinsic excitability and network topology in spatiotemporal
pattern generation in neural networks.
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It is clear that spatiotemporal patterning in brain networks is a complex outcome of network
physical connectivity and dynamical properties of interacting neurons, however characterization
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of this interaction remains elusive. These dynamical properties of the cells are affected /controlled
by various neuromodulators secreted by the brain at various cognitive cycles or as a part of the
response to the incoming stimuli. During sleep the brain cycles though distinct spatiotemporal
patterns of neural activity. Acetylcholine (ACh) is a major regulatory factor of sleep states
and plays an important role in the transition from slow wave sleep to waking or rapid eye
movement sleep. Slow wave sleep is a slow oscillation in firing rate that travels through the
cortical network and occurs when ACh levels are low [1]. At the cellular level, ACh causes
changes in neural excitability by shifting the neural phase response curve (PRC) from type 2
to type 1 (Figure 1A)[2]. Previous modeling studies show that the shift of the PRC leads to a
change from synchronous (type 2 PRC) to asynchronous (type 1 PRC), network dynamics while
during low ACh levels networks display a high level of synchrony and network wide bursts|3|. As
of yet the effects of intermediate cholinergic modulation have not been investigated. In this study,
we use a Hodgkin-Huxley type model neuron which allows us to simulate different ACh levels
and control a continuous transition from a type 1 to type 2 PRC [4]. We show that the PRC
type of neurons drives different spatial patterns of activity within networks, with activity being
highly localized for type 1 PRC neurons (Figure 1B) then quickly transitioning to wave dynamics
as neurons are shifted to a type 2 PRC (Figure 1B). In networks composed of type 1 neurons,
the region where activity is localized is defined by heterogeneities in network structure, with as
little as a 1% increase in synaptic strength being sufficient to define the location of high activity.
Additionally, the highly active zone is the origin of traveling waves in type 2 networks. When in
the wave regime, decreasing cholinergic modulation of the PRC increases the speed that waves
travel across the network. In summary, the precise character of frequency dynamics is governed
by the interplay between network structure and the intrinsic excitability of component neurons.
Expanding upon our results, we argue (1) that the intrinsic excitability of neurons shapes how
activity spreads though a network and (2) that the focal point of traveling waves during slow
wave sleep is a region selected for by synaptic potentiation.
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Figure 1: PRC induced changes in network dynamics. A: Increasing gKs shifts the PRC of the
model neuron from type 1 at low values to type 2 at high values. B: Raster plots showing
characteristic dynamics for networks at two different PRC types. Cells are sorted by distance
from the origin in zy space and black dots represent excitatory action potentials and red dots
indicate inhibitory action potentials.
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The mechanisms for the emergence and transmission of synchronized oscillations in Parkin-
son’s disease (PD) still remain debated. In a previous publication [1], we argue that the external
globus pallidus (GPe) has a crucial role in desynchronising and synchronizing the basal gan-
glia. While neural activity of the healthy GPe shows almost no correlations between pairs of
neurons, prominent synchronization in the ( frequency band arises after dopamine depletion.
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Intrinsic factors of the GPe, in particular its internal connections, could be take major roles in
this synchronisation process.

We introduce pallidal gap junctional coupling as a possible mechanism for synchronization
of the GPe after dopamine depletion. In a confocal imaging study, we show the presence of the
neural gap junction protein Cx36 in the human GPe, including a possible remodeling process in
PD patients. Dopamine has been shown to down-regulate the conductance of gap junctions in
different regions of the brain [2,3|, making dopamine depletion a possible candidate for increased
influence of gap junctional coupling in PD.

To see what effect electrical coupling in the GPe could have, we incorporate gap junctions
in a small conductance-based model of the basal ganglia. In both GPe and GPi, gap junctional
coupling has clear effects on synchrony. Especially numerous coupling with sufficient strength
in the GPe is able to synchronize the whole basal ganglia. Next, we focus on dynamics inside
the GPe. Phase-response curve analysis is used to describe the susceptibility of GPe neurons
to synchronize with input, depending on electrical coupling to other GPe neurons. Additionally,
we simulate the effect of gap junctions on synchrony in a larger network of the GPe, including
biologically realistic cell models and inhibitory synaptic coupling.

Conclusions: We hypothesize that strong gap junctional coupling in the GPe disturbs the
self-desynchronization in this nucleus and leads to long-range synchronization. Pallidal gap junc-
tions, which are potentially modulated by dopamine, could be a powerful trigger of synchrony in
Parkinson’s disease. We stress that also gap junctions in other nuclei such as the striatum may
play important roles.
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O18 The dynamic separation of pallidal neurons into anti-phase oscillatory groups
under Parkinsonian conditions in a computational model

Robert Merrison-Hort*, Roman Borisyuk
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Neurons in the globus pallidus (GP) of urethane anesthetized rats typically display one of four
spiking patterns: tonic, non-modulated, firing (the NM group); firing that occurs preferentially
during either the active or inactive phases of slow cortical oscillations (TA or TI group, respec-
tively); or silence/quiescence (QU group). In healthy animals the vast majority of neurons are
in the non-modulated group. However, under conditions of experimentally-induced Parkinsonism
there is a dramatic increase in the number of neurons whose firing patterns show modulation
by the slow cortical rhythm, either in-phase or anti-phase [1]. The mechanism that underlies the
increased tendency for GP neurons to become entrained by cortical rhythms is unclear, but it
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may contribute to some of the motor symptoms of Parkinson’s disease.

There are two main pathways from the cortex to the GP: via the inhibitory striatum and
via the excitatory subthalamic nucleus (STN), but it is not known how these inputs sculpt the
pathological pallidal firing patterns. To study this we developed a neural network model of sin-
gle compartment conductance-based (Hodgkin-Huxley) pallidal neurons, based on a previous
multi-compartment model [2]. The GP neurons received rhythmic input from STN neurons and
reciprocal inhibition from each other. Under "healthy’ conditions, almost all model GP neurons
showed tonic firing that was not significantly modulated by the rhythmic STN input (Figure
1A,B). We attempted to model 'Parkinsonian’ conditions by increasing the intensity of STN neu-
ron firing and the strength of STN-GP and GP-GP synapses. Under these conditions, two groups
of anti-phase oscillatory GP neurons emerged (Figure 1C,D). Our model also includes downreg-
ulation of Hyperpolarization activated Cyclic Nucleotide-gated (HCN) channels in response to
bursting, since this may contribute to emergence of Parkinsonian activity [3|. We found that this
provides better agreement with experimental data but that it is not essential in order for the two
groups to appear.

Our results [4] support the hypothesis that oscillatory entrainment occurs primarily via the
subthalamic pathway. We find that as a result of the interplay between excitatory input from the
STN and mutual inhibition between GP neurons, the network shows a self-organizing dynamical
behavior where two groups of neurons (TT and TA) emerge out of a homogeneous population.

Figure 1: Proportions of neurons in each category (A,C) and spiking activity sorted by classifi-
cation confidence (B,D) for healthy (left) and Parkinsonian (right) parameters.
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One of the most intriguing ideas in complexity theory is the notion that some systems can
organize dynamically to a point critically poised between order and disorder, hovering at the
so-called ’edge of chaos’. It has been proposed that the computational performance of neural
networks is optimized when close to the order—disorder phase transition. In this presentation we
explore the novel hypothesis that the human brain may be operating at the edge of chaos during
slow-wave sleep (SWS), the deepest phase of NREM (non-rapid-eye-movement) sleep.

We build on an existing continuum model of the cortex [1] to incorporate known changes in
specific neurotransmitter concentrations-GABA increase with simultaneous acetylcholine (ACh)
decrease—during descent from wake into natural SWS [2]. The GABA boost is modeled as an
anesthetic-like prolongation of the inhibitory postsynaptic potential (IPSP) paired with a re-
striction of gap-junction connectivity, while ACh suppression reduces resting cell voltage but
enhances excitatory synaptic efficiency. Our model is able to produce a plausible sequence of
time-series for EEG progression through the stages of NREM sleep (see Fig. 1).

These sleep-induced neurotransmitter changes can have profound effects on cortical stability:
alterations in inhibitory gap-junction connectivity controls a pattern-forming Turing instability,
and manipulations of IPSP duration can lead to Hopf temporal oscillations which, in a patho-
logical limit, can lead to whole-of-cortex seizure. We argue that normal brain function requires a
balance between Turing and Hopf instabilities, and that descent into deep sleep entails a rebal-
ancing in favor the Hopf instability. Model simulations predict that the spatiotemporal patterns
for NREM sleep stages-1 to -4 are chaotic, showing exponential trajectory divergence from closely
similar starting conditions. In contrast, the seizure state is highly ordered and non-chaotic. Since
most sleepers do not proceed to seizure, we posit the existence of a protective mechanism that
regulates the naturally sleeping brain so that it remains close to—but does not cross—the disor-
der/order boundary during deepest sleep.

There is clinical evidence that high cortical activity is associated with closure of gap-junctions
[3]. This has motivated a learning rule that regulates the gap-junction conductivity based on
the spatial covariance of inhibitory firing-rate activity across the two-dimensional cortical grid.
We find that this rule enables the cortex to regulate its slow-wave dynamics from chaotic to
marginally-ordered, and that regulation failure typically leads to seizure onset.
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Figure 1: Model-generated sleep electrocorticograms for descent from wake to deep NREM. Model
predictions are the excitatory soma voltage recorded at one point on a 120 x 120 cortical grid
after filtering with a 0.5-Hz high-pass filter.
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020 Chaos in heterogeneous neural networks

Merav Stern*, Johnatan Aljadeff, and Tatyana Sharpee

I. The critical transition point
There is accumulating evidence that biological neural networks possess optimal computational
capacity when they are at or near a critical point in which the network transitions to a chaotic
regime. We derive a formula for the critical point of a general heterogeneous neural network. This
formula relates the structure of the network to its critical point. The heterogeneity of the network
may describe the spatial structure, a multiplicity of cell types or any selective connectivity rules.

To define the network we divide the N neurons into D groups such that >3,y p Ng= N.
The synaptic weight between neurons 7, j (the connectivity matrix element J;;) is drawn from a
centered distribution with standard deviation summarized in a D x D rule matrix N~Y2G )a(j)
(insets to A, c(i) is the type index of neuron 7). The network obeys the standard rate dynamics
(d/dt)x, = —x; + ijl,...,N Jij tgh Zj.

The global behavior of the network changes from a single fixed point to chaos when r =1, r
being the radius of the circle that bounds the spectrum of the connectivity matrix (panel A). We
derived a formula, in terms of the matrix G and the vector Ny, for r that can also be thought
of as an effective gain [1]: it is the square root of the maximal eigenvalue of a D x D matrix M
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whose ¢, d element is Mg = NN, (G.q)>.

We use our understanding of the general heterogeneous dynamical system to a network with a
large fraction of cells in the subcritical regime, and a small fraction of supercritical neurons. This
can be thought of as a model of a network where adult neurogenesis occurs, where a small fraction
of hyperexcitable neurons are continuously integrated. Using a supervised learning algorithm
(FORCE, |2]) we show that r is as a good coordinate to describe the network’s “learnability”
(panels B,C). Learning is optimal for values of r similar to those found in a homogenous network.
Our results suggest that the new neurons can allow the network to be poised at criticality with
no global changes to connectivity, and that their specific roles are context dependent, in contrast
to previous hypotheses.

Figure 1: (A) Example spectra of connectivity matrices (gray) with r > 1 (top, indicated in blue
and purple respectively) and r < 1 (bottom). The average synaptic gain (red) does not give the
correct boundary of the spectrum and would predict opposite behavior. The matrix G ga(j) is
indicated by the color plots (top), and activity of representative neurons from the two groups
(bottom) of each example. (B) The activity of a readout unit during spontaneous activity, a
FORCE learning epoch, and post learning for neurogenic and homogeneous subcritical networks.
The neurogenic network quickly matches the target signal (gray) and robustly reproduces it. (C)
The learnability of an ensemble of neurogenic networks as a function of the hyperexcitability and
new neuron fraction coincides with contour lines of r (white).

II. Multiple activity modes
We study the activity of a recurrent neural network consisting of multiple cell groups through the
structure of its correlations by showing how the rules that govern the strengths of connections
between the different cell groups shape the average autocorrelation found in each group. We
derive an analytical expression for the number of independent autocorrelation modes the network
can concurrently sustain. Each mode corresponds to a non-zero component of the network’s
autocorrelation, when it is projected on a specific set of basis vectors. In a companion abstract
we derive a formula for the first mode, and hence the entire network, to become active. When
the network is just above the critical point where it becomes active all groups of cells have the
same autocorrelation function up to a constant multiplicative factor. We derive here a formula
for this multiplicative factor which is in fact the ratio of the average firing rate of each group. As
the effective synaptic gain grows a second activity mode appears, the autocorrelation functions
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of each group have different shapes, and the network becomes doubly chaotic. We generalize
this result to understand how many modes of activity can be found in a heterogeneous network
based on its connectivity structure. Finally, we use our theory to understand the dynamics of
a clustered network where cells from the same group are strongly connected compared to cells
from different groups. We show how this structure can lead to a one or more activity modes and
interesting switching effects in the identity of the dominant cluster.

To model the heteregenous network we include N neurons that are divided into D groups.
The synaptic weight between neurons ¢, ;7 is drawn from a centered distribution with standard
deviations summarized in a D x D rule matrix N~/ QGc(i)d(j) where c¢(i) is the group neuron i
belongs to. The network obeys the standard rate dynamics (d/dt)x; = —x; + 3,21y Jij tghz;.
The global behavior of the network changes according to the real part of the eigenvalues of a D x
D matrix M whose ¢, d element is M3 = N7 N.(G.q)>. When M’s largest eigenvalue, A;, become
larger than 1 the network become chaotic. The ratios of the components of the leading eigenvector
V1 are the ratios of the autocorrelations functions of the different groups (panel A). When A,
becomes larger than 1 the network is doubly chaotic (panel B). In general, the autocorrelation
vector has a non-zero projection only on eigenvectors of M with eigenvalues greater than 1 (panel
C) and hence the number of active modes in the network is equal to the number of eigenvalues
of M that are larger than 1.

Figure 2: (A) For an example network with 1200 neurons divided to 3 equally sized groups we
plot the autocorrelation function averaged over neurons belonging to the same group. G was
chosen such that one eigenvalue of M is greater than 1. Independent of the time lag 7 the
autocorrelations maintain a constant ratio that is equal to the ratio of the components of the
eigenvector of M corresponding to the leading eigenvalue. Inset: for 20 example networks we
computed the variance of the autocorrelation vector along the three eigenvectors of M and found
that the variation in autocorrelation along the leading eigenvector is three orders of magnitude
larger than along the other two directions. (B) In this example network M has two eigenvalues
greater than 1. The autocorrelations are no longer a constant ratio of each other, indicating that
the network maintains two modes of autocorrelation concurrently. Inset: when averaged over 20
networks we see that the variation along the two eigenvectors with eigenvalues greater than 1 is
significantly larger than along the third eigenvector. (C) For the two examples networks shown
in (A B) we plotted the trajectory of the autocorrelation vector as a function of the time lag 7,
and show that they are confined to in the subspace spanned by the eigenvectors, V; and V5 which
has eigenvalues greater than 1.
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Workshops

W1 Cortical Oscillations: Computational models and dynamic mechanisms
Room 207, W, Th

Horacio Rotstein, New Jersey Institute of Technology

Mark Kramer, Boston University

Oscillatory activity at various frequency ranges have been observed in various areas of the
brain and are believed to be important for cognitive functions such as learning, memory, navi-
gation and attention. Disruption of rhythmic oscillations has been implicated in diseases of the
nervous system including epilepsy and schizophrenia. Neuronal oscillations have been studied
at the single cell level, as the result of the interaction of a neuron’s intrinsic properties, at the
network level, as the result of the interaction between the participating neurons and neuronal
populations in a given brain region, and at higher levels of organization involving several of these
regions. The advances in this field have benefited from the interaction between experimental and
theoretical approaches. The purpose of this workshop is to bring together both experimentalists
and theorists with the goal of discussing their results and ideas on both the underlying mecha-
nisms that govern the generation of these rhythms at the various levels of organization mentioned
above and their functional implications for cognition.

Speakers:

e Alla Borisyuk (University of Utah, UT, USA)

e Christoph Borgers (Tufts University, MA, USA)
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e Victoria Booth (University of Michigan, MI, USA)

e Mark Cunningham (University of Newcastle upon Tyne, UK)
e Carina Curto (University of Nebraska-Lincoln, NE, USA)

e Vassilis Cutsuridis (Foundation for Research and Technology - Hellas, Greece)
e Flavio Frohlich (University of North Carolina, NC, USA)

e David Hansel (University Paris Descartes, France)

e Michael Hasselmo (Boston University, MA, USA)

e Mark Kramer (Boston University, MA, USA)

e Paola Malerba (University of California at Riverside, USA)

e Adrien Peyrache (NYU, NY, USA)

e Horacio G. Rotstein (NJIT, NJ, USA)

e Jonathan E. Rubin (University of Pittsburgh, PA, USA)

e Frances Skinner (University of Toronto, ON, Canada)

e Jiannis Taxidis (UCLA, CA, USA)

e Roger Traub (IBM, NY, USA)

e John A. White (University of Utah, UT, USA)

W2 Computational methods and modeling of Astrocyte pyhsiology and Neuron-
glia interactions

Room 2103, W, Th

Hugues Berry, INRIA
Maurizio De Pitta, University of Chicago

In recent years, the simultaneous recognition that astrocytes sense neighboring neuronal activ-
ity and release neuroactive agents (or 'gliotransmitters’) has been instrumental in the uncovering
of the many possible roles played by these cells in the regulation of synaptic transmission and
neuronal activity. These findings suggest that information travels and is processed not just in
the neuronal circuitry but in an expanded neuron-glial network. However, much remains elusive
about the role of astrocyte signaling in brain information processing. Besides the lack of conclu-
sive experimental evidence, this is partly due to a substantial lack of a theoretical framework to
address modeling and characterization of the many possible astrocyte functions. Computational
modeling is challenged by the fact that many details remain hitherto unknown and conventional
approaches to describe neuronal and synaptic function may be unsuitable to explain experimental
observations when astrocytic signaling is taken into account. Progress in astrocyte modeling is
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also in part hampered by the lack of workshop or annual event specifically dedicated to computa-
tional approaches of neuron-glia interactions. This workshop aims at filling this gap, by bringing
together a panel of scientists that work on modeling of neuron-glia interactions. This aims at
providing both the expert from the field and the OCNS community in general, a comprehensive
picture of the current state of the art, the open questions and the theoretical challenges put forth
by the modeling of astrocyte physiology.

Speakers:

e Mahmood Amiri, Italian Institute of Technology, Genoa, Italy

e Hugues Berry, INRIA, Lyon, France

e Maurizio De PittA , University of Chicago, IL, USA

e David Holcman, Ecole Normale Superieur, Paris, France

e Viktor B. Kazantsev, N. I. Lobachevsky State University of Nizhni Novgorod, Russia
e Konstantin Mergenthaler, Technische UniversitArit Berlin, Germany

e Suhita Nadkarni, Indian Institute of Science Education and Research at Pune, India
e Annalisa Scimemi, State University of New York at Albany, NY, USA

e Minchul Kang, Saint Thomas University at Miami, FL, USA

W3 Methods of Information Theory in Computational Neuroscience
Room 2101, W, Th

Michael C Gastpar, Laboratory for Information in Networked Systems, EPFL and
UC Berkeley

Conor Houghton, Department of Mathematics, Trinity College Dublin

Simon R Schultz, Department of Bioengineering, Imperial College

Tatyana O Sharpee, The Computational Neurobiology Laboratory, Salk Institute

Methods originally developed in Information Theory have found wide applicability in compu-
tational neuroscience. Beyond these original methods there is a need to develop novel tools and
approaches that are driven by problems arising in neuroscience.

A number of researchers in computational /systems neuroscience and in information /communication
theory are investigating problems of information representation and processing. While the goals
are often the same, these researchers bring different perspectives and points of view to a common
set of neuroscience problems. Often they participate in different fora and their interaction is
limited.

The goal of the workshop is to bring some of these researchers together to discuss challenges
posed by neuroscience and to exchange ideas and present their latest work.

The workshop is targeted towards computational and systems neuroscientists with interest in
methods of information theory as well as information/communication theorists with interest in
neuroscience.

References:

83



e C.E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal,
vol. 27, pp. 379-423 and 623-656, 1948.

e Milenkovic, O., Alterovitz, G., Battail, G., Coleman, T. P.; et al., Eds., Special Issue on
Molecular Biology and Neuroscience, IEEE Transactions on Information Theory, Volume
56, Number 2, February, 2010.

e Dimitrov, A.G., Lazar, A.A. and Victor, J.D., Information Theory in Neuroscience, Journal
of Computational Neuroscience, Vol. 30, No. 1, February 2011, pp. 1-5, Special Issue on
Methods of Information Theory.

Speakers:

e Andre Longtin, Physics Department, University of Ottawa
e Maurice Chacron, Faculty of Medicine, McGill University

o Mike DeWeese, Physics Department and the Helen Wills Neuroscience Institute, UC Berke-
ley

e Lav R. Varshney, Department of Electrical and Computer Engineering, UIUC
e Peter Grassberger, Complexity Science Group, University of Calgary

e Byron Yu, Electrical & Computer Engineering and Biomedical Engineering, Carnegie Mel-
lon University

e Jean Lienard, Oregon Hearing Research Center, Oregon Health & Science University
e Vijay Balasubramanian, Department of Physics and Astronomy, University of Pennsylvania
e Kechen Zhang, Department of Biomedical Engineering, Johns Hopkins University

e Chris DiMattina, Department of Psychology, Florida Gulf Coast University

W4  Running parallel simulations on HPC resources via the Neuroscience Gateway
Portal

Room 2102B, W

Amit Majumdar, UCSD
Ted Carnevale, Yale School of Medicine

This workshop presents the the Neuroscience Gateway Portal at CNS 2014, Quebec City,
Canada. Access to HPC resources is growing ever more important as advances in experimental
and theoretical neuroscience drive the formulation of increasingly complex models and simula-
tion projects that impose computational burdens exceeding the capabilities of locally available
hardware. The NSG is designed to eliminate most administrative and technical barriers to using
HPC resources. It offers free access to these resources through a streamlined application process.
Its web-based interface simplifies the tasks of uploading models, specifying job parameters, mon-
itoring job status, and storing and retrieving output data. Simulators currently installed include

84



NEURON, GENESIS3, MOOSE, NEST, PyNN, and Brian. This workshop will combine didactic
presentations by NSG’s developers, discussions with developers of simulators for spiking neural
networks, and hands on instruction in how to use the portal (participants are invited to bring
laptop computers for this). Registration information to follow soon.

Speakers:

e Vadim Astakhov, UCSD

e Anita Bandrowski, UCSD

e Ted Carnevale , Yale School of Medicine, (Co-PI)
e Michael Hines, Yale School of Medicine

e Amit Majumdar, UCSD, (PI)

e Maryann Martone, UCSD, (Co-PI)

e Subhashini Sivagnanam, UCSD

e Kenneth Yoshimoto, UCSD

W5 Resonance and Entrainment: From Dynamic Systems Theory to Targeted
Brain Stimulation

Room 2104B, W
Flavio Frolich, University of North Carolina at Chapel Hill

Oscillations are a prevalent feature of neuronal activity and are of fundamental importance
for orchestrating behavior. Despite the ubiquitous observations about rhythmic synchronization
of neuronal activity, the causal role of oscillatory activity in the nervous system has remained a
matter of debate. Neuroscience is currently undergoing a major transformation due to the advent
of tools such as optogenetics and transcranial alternating current stimulation to probe for the
causal role of oscillatory activity by selective enhancement or suppression of specific oscillatory
activity patterns. These new experimental perturbations have emerged as a unique opportunity
to establish the causal role of brain oscillations. However, progress has been hampered by a lack
of understanding how external perturbations modulate ongoing endogenous oscillatory activity
in the brain. Mathematical frameworks from dynamic system theory such as resonance and
phase response curves can provide important cues for experimental design and explanation of
experimental data but has yet had only limited impact on the broader network neuroscience
community. Advancing our understanding of targeted modulation of neuronal oscillations will
not only provide new approaches to test for the causal role of activity patterns but will hopefully
also offer novel brain stimulation approaches for the treatment of neurological and psychiatric
illnesses that have associated with impaired oscillation structure of brain activity. This workshop
aims to bring together researchers from a several different areas of research that share a common
interest in the mechanisms of entrainment of neuronal oscillation. In particular, the workshop
will aim to bridge mathematical and computational neuroscience, systems neuroscience, and
translational neuroscience. This workshop will have been a success if it establishes an active
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dialogue about how we can interact with oscillations in the nervous system to probe for their
functional and behavioral roles and if novel interdisciplinary collaborations originate from this
workshop.

Speakers:

e Farzan Nadim (NJIT): Resonance and synaptic dynamics (tentatively confirmed)
e Yosef Yarom (Hebrew University): Subthreshold oscillations and resonance (confirmed)

e Horacio Rotstein (NJIT): Biophysical and dynamic mechanisms of resonance in neurons
and networks (confirmed)

e Michael Hasselmo (BU): Theta resonance and grid cells (tentatively confirmed)
e Vikaas Sohal (UCSF): Optogenetic control of cortical oscillations (confirmed)
e Tommaso Fellin (U of Genova): Layer-specific control of cortical oscillations (confirmed)

e Michael Halassa (NYU): State-dependent organization of thalamic reticular microcircuits
(confirmed)

e Steven Schiff (PennState): Neural Control Engineering for modulating cortical oscillations
(confirmed)

e Charles Schroeder (Columbia): Endogenous modulation of cortical oscillations (confirmed)

e Flavio Frohlich (UNC): Brain Stimulation by Network Resonance (confirmed)

W6 Methods of System Identification for Studying Information Processing in Sen-
sory Systems

Room 2105, W

Aurel A Lazar, Department of Electrical Engineering, Columbia University
Mikko I Juusola,

A functional characterization of an unknown system typically begins by making observations
about the response of that system to input signals. The knowledge obtained from such observa-
tions can then be used to derive a quantitative model of the system in a process called system
identification. The goal of system identification is to use a given input/output data set to derive
a function that maps an arbitrary system input into an appropriate output.

In neurobiology, system identification has been applied to a variety of sensory systems, ranging
from insects to vertebrates. Depending on the level of abstraction, the identified neural models
vary from detailed mechanistic models to purely phenomenological models.

The workshop will provide a state of the art forum for discussing methods of system identification
applied to the visual, auditory, olfactory and somatosensory systems in insects and vertebrates.
The lack of a deeper understanding of how sensory systems encode stimulus information has
hindered the progress in understanding sensory signal processing in higher brain centers. Eval-
uations of various systems identification methods and a comparative analysis across insects and
vertebrates may reveal common neural encoding principles and future research directions.
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The workshop is targeted towards systems, computational and theoretical neuroscientists with
interest in the representation and processing of stimuli in sensory systems in insects and verte-
brates.

References:

e Vasilis Z. Marmarelis (2004). Nonlinear Dynamic Modeling of Physiological Systems. Wiley-
IEEE Press, Hoboken, NJ, 2004.

e Wu, M., David, S., & Gallant, J. (2006). Complete Functional Characterization of Sensory
Neurons by System Identification. Annual Review of Neuroscience, 29, 477a€“505.

e Ljung, L. (2010). Perspectives on System Identification, Annual Reviews in Control, 34
(2010), 1-12.

Speakers:
e Thomas R. Clandinin, Department of Neurobiology, Stanford University.

e (Claude Desplan, Department of Biology, NYU.

e Mark A. Frye, Department of Integrative Biology and Physiology, UCLA.

e Mikko I. Juusola, Department of Biomedical Science, University of Sheffield.

e Arvind Kumar, Bernstein Center Freiburg, University of Freiburg.

e Aurel A. Lazar, Department of Electrical Engineering, Columbia University.

e Stefan Mihalas, Allen Institute for Brain Science.

e Tatyana O. Sharpee, The Computational Neurobiology Laboratory, Salk Institute.

e Glenn C. Turner, Cold Spring Harbor Laboratory.

W7 Dynamics of Disease States
Room 2104A, W

Jonathan Rubin, University of Pittsburgh

Stephan Van Gils, University of Twente

Changes at molecular, cellular and network levels may lead to a variety of disorders involving
pathological brain states. Examples range from schizophrenia and spreading depression to disor-
ders with significant motor pathologies, such as Parkinson’s disease and epilepsy. Computational
modeling based on experimental data offers means to gain insight about the underlying mech-
anisms and generate novel predictions. In particular, this approach provides the opportunity to
explore ideas and tease apart factors that are inaccessible in wet lab experiments and even allows
for the simulation of therapeutic approaches, including closed-loop or individualized therapies.
In this workshop we will discuss how new insights at the molecular, cellular and network lev-
els can be incorporated into computational modeling of pathological brain states. We aim to
stimulate discussion that promotes advances in the use of computation in the development of
pharmaceutical, surgical or electrical interventions.

Speakers:
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e Viktor Jirsa

e Wim van Drongelen
e Marc Goodfellow

e Robert Rosenbaum
e Bettina Schwab

e Ingo Bojak

e Steven Schiff

e Markus Dahlem

¢ Wytse Wadman

e Shane Lee

e Sid Visser

e Theoden Netoff

W8 Sleep Rhythms and Memory Consolidation
Room 2102B, Th

Maxim Bazhenov, UC Riverside

Igor Timofeev, Laval University

During slow-wave sleep the cortex is decoupled from external inputs and can be devoted
to consolidating previously acquired labile memories into stable memories. Recently, memory
replay has been demonstrated during sleep and associated with characteristic oscillations giving
rise to the hypothesis that these may form the critical neural substrate of memory consolidation.
However, these studies have mainly focused on the rat hippocampus; while replay has also been
demonstrated in other structures and species, evidence remains sparse, especially concerning the
specific interactions between thalamic, hippocampal and cortical networks which subserve sleep-
dependent consolidation of memory. At the same time recent technological developments make
now possible active interaction with brain structures, thus opening a possibility of controlling and
enhancing consolidation processes. In this workshop, we will discuss new findings from animal,
human and computation works that explain fundamental mechanisms of sleep rhythm generation
and sleep rhythms contribute to memory consolidation. The goal of this workshop is to bring
together experimental and computational neuroscientists to discuss fundamental principles of the
network dynamics of the brain that are involved in the processes of memory and learning.

Speakers:

e Maxim Bazhenov (UC Riverside)

e Jean-Marc Fellous (Univ Arizona)
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e Eric Halgren (UC San Diego)

e Andre Longtin (Univ Ottawa)

e Sara Mednick (UC Riverside)

e Hong-Viet Ngo (Univ Tubingen)

e Alex Roxin (Campus de Bellaterra, Barcelona)
e Tim Rogers (Univ Wisconsin-Madison)

e Igor Timofeev (Laval Univ)

W9 Basal Ganglia: Structure, dynamics and function
Room 2104B, Th

Arvind Kumar, Bernstein Center Freiburg, University of Freiburg, Germany

Jeanette Hellgren Kotaleski, Royal Institute of Technology, Stockholm, Sweden

The basal ganglia (BG) are involved in a wide range of motor and cognitive processes, and
accordingly, their dysfunction can lead to several neurological diseases. To understand the com-
putational role of BG in these various functions and dysfunction several bottom-up and top-down
models have been proposed. Bottom-up computational approaches have addressed the dynamical
properties and interaction of the neural activity in the BG nuclei, while top-down approaches
rather have described BG function inspired by machine learning algorithms.

Recent advances in experimental methods have allowed for the characterization of BG activity
and cortico-basal ganglia interactions with great detail both in normal and pathological conditions
and have challenged the classical feedforward view of the basal ganglia network.

In this workshop, we bring together both experimentalists and theoreticians to review the recent
advances in understanding of BG function. Specifically, we will discuss how computational models
of BG have advanced to integrate the new data on BG network structure and neuronal activity
and thus, to understand how the relationship between BG dynamics and function/dysfunction of
BG. Finally, we will discuss how top-down functional models could be linked to the bottom-up
dynamical models and provide new predictions and explanations of the experimental data in
terms of neuronal and network properties.

Speakers:

e Joshua Berke (Michigan State University, Ann Arbor, MI, USA)

Avrama Blackwell (George Mason University, Fairfax, VA, USA)

Michael Frank (Brown University, Providence, RI, USA)

Aryn Gittis (Carnegie Mellon University, Pittsburg, PA, USA)

Jesse Goldberg (Cornell University, NY, USA)

Frank Hamker (Chemnitz University of Technology, Chemnitz, Germany)
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e Ahmed Moustafa (University of Western Sydney, Australia)
e Jyotika Bahuguna (University of Freiburg, Germany)
e Mikael Lindhal (Royal Institute of Technology, Stockholm, Sweden)

W10 Large-scale brain structure and dynamics
Room 2105, Th

Jorge F Mejias, NYU
Xiao-Jing Wang,

Tackling core Neuroscience problems such as memory, perception or attention has been pos-

sible, up to now, by focusing on small brain areas where simplified dynamics and connectivity
patterns could be assumed, or by using full brain imaging techniques which provide little infor-
mation about the dynamics of local microcircuits. With the development of novel imaging and
neuroanatomical techniques in the recent years, a more systematic study of the brain at a full-size
scale is getting close to reality. However, our current understanding of the dynamics of large-scale
brain networks, constituted by a complex composite of different neural micro- and mesocircuits,
is very limited and requires a significant theoretical and computational effort.
In this one-day workshop, recent theoretical and experimental advances on the structure and dy-
namics of large-scale neural circuits will be presented. Our main goal will be to foster interactions
between experimental, computational and theoretical neuroscientists interested in the brain as a
large-scale networked system.

Speakers:

e Chris Eliasmith (U. Waterloo)

Henry Kennedy (INSERM, Lyon)

Stefan Mihalas (Allen Institute, Seattle)

Randy McIntosh (Baycrest Center, Toronto)

Adrian Ponce (UPF, Barcelona)
Rishidev Chaudhuri (NYU)
Francis Song (NYU)

W11 Finite-size fluctuations in neural systems - from ion channels to networks
Room 2104A, Th

Richard Naud, University of Ottawa, Canada
Tilo Schwalger, EPFL, Switzerland
Moritz Deger, EPFL, Switzerland

Fluctuations of neural dynamics generated in systems of small (finite) size are ubiquitous on
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many levels of the nervous system and have important functional implications. For instance, ionic
currents are noisy if mediated by a small population of ion channels (channel noise), synapses
become unreliable when they contain a finite number of vesicles and neurotransmitters, and the
population activity of neural circuits fluctuates due to a finite number of neurons. Such finite-size
effects contribute to neural variability, which fundamentally limits neural signal processing. On
the other hand, in nonlinear systems, intrinsic noise may lead to drastic effects: In particular,
finite-size fluctuations may enable transitions between different neural states, decorrelate neu-
ral activity and even improve information processing. Accounting for finite-size fluctuations is
a challenging theoretical problem that requires advanced methods for treating non-equilibrium
statistical systems. Recently, there has been much analytical progress characterizing finite-size
effects: from understanding information transmission through stochastic synapses, to elucidating
spike initiation in the face of channel noise, and all the way to capturing the statistics of the fluc-
tuations of entire neural networks. In this workshop, we bring together researchers on finite-size
effects on various scales of description throughout the neurosciences. Although individual system
properties and function might differ, common mathematical approaches and computational roles
will be discussed to further our understanding of the puzzling roles of stochasticity in neural
dynamics and computation.
Speakers:

e Taro Toyoizumi (group leader, RIKEN Brain Institute, Japan)
e John A. White (Professor, University of Utah)
e Maurizio Mattia (researcher, Instituto Superiore di SanitA , Rome, Italy)

e Gregory Dumont (postdoctoral fellow, group of AndrA@ Longtin, University of Ottawa,
Canada)

e Brent Doiron (associate Professor, University of Pittsburgh, USA)
e Alex Bird (doctoral student with Magnus Richardson, University of Warwick, UK)

e Tilo Schwalger (postdoctoral fellow, group of Wulfram Gerstner, EPFL, Switzerland)

W12 Student/Post-doc career Workshop
Room 2101, W 6-8 PM

Jorge F Mejias, NJIT

This workshop, aimed at graduate students and post-doctoral fellows, will discuss career
options.
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P1

P2

P3

P4

P5

Posters

Sunday Posters
Posters P1 — P75

Computational Multifactoriality in a Detailed Neural Network Model Resem-
bling Center-Surround Suppression Deficits in Schizophrenia

Christoph Metzner!?*, Achim Schweikard!, and Bartosz Zurowski®

L Institute for Robotics and Cognitive Systems, University of Luebeck, 23538 Luebeck, Germany
2 Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538
Luebeck, Germany

3 Department of Psychiatry, University of Luebeck, Schleswig-Holstein, 23538 Luebeck, Germany

Measuring predictability of autonomous network transitions into bursting dy-
namics

Sima Mofakham!*, Michal Zochowski':?
L Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
2 Department of Physics, University of Michigan, Ann Arbor, MI, USA

Interaction of neuronal resonance properties and network connectivity in pat-
tern formation and separation

Elizabeth Shtrahman'*, Michal Zochowski?

L Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA
2 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

Large-scale spiking circuit simulation of spatio-temporal dynamics in superior
colliculus

Richard Veale'?*, Tadashi Isa*?, and Masatoshi Yoshida??

L Cognitive Science Program, Indiana University, Bloomington, IN, USA
2Dept. of Developmental Physiology, NIPS, Okazaki, Japan
3Dept. of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI),

Hayama, Japan

Functional Identification of an Antennal Lobe DM4 Projection Neuron of the
Fruit Fly
Aurel A. Lazar*, Chung-Heng Yeh

Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
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P6

P7

P8

P9

P10

P11

P12

Neural Pathway Prediction based on Multi-neuron Spike Train Data
Yi Zeng'*, Tielin Zhang'?, and Bo Xu!

Lnstitute of Automation, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

Neural Spike Prediction based on Spreading Activation
Tielin Zhang!?*, Yi Zeng!, and Bo Xu!

U nstitute of Automation, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

“Adaptive learning” as a mechanistic candidate for reaching optimal task-set
representations flexibly

Salva Ardid*, Matthew Balcarras, and Thilo Womelsdorf

Department of Biology and Center for Vision Research, York University, Toronto, Ontario,

Canada, M3J 1P3

Reservoir of neurons with adaptive time constants: a hybrid model for robust
motor-sensory temporal processing

1,3%

Sakyasingha Dasguptal3*, Poramate Manoonpong??, and Florentin Worgotter!?

LIII. Institute for Physics — Biophysics, Georg-August University, Géttingen, Germany
2 Bernstein Center for Computational Neuroscience, Géttingen, Germany
3 Mersk Mc-Kinney Mgller Institute, University of Southern Denmark, Odense, Denmark

The Association between cell assemblies and transient dynamics
Christian Tetzlaff'?*, Sakyasingha Dasguptal?, and Florentin Worgotter!-?

LIII. Institute for Physics - Biophysics, Georg-August University, Gottingen, Germany
2 Bernstein Center for Computational Neuroscience, Géttingen, Germany

Noise-induced speed up in repetitively firing neurons occurs far from spike
threshold

Todd Troyer'*, David Barraza!, Michael Farries?, and Charles Wilson!

L Biology Department, University of Texas, San Antonio, TX 78249, USA
2Dept. of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA

Variability in respiratory rhythm generation: in vitro and in silico models
Chris Fietkiewicz!'*, Christopher Wilson?

L Dept. of Elec. Eng. and Comp. Sci., Case Western Reserve University, Cleveland, OH, 44107,
USA
2 Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350,
USA
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P13

P14

P15

P16

P17

P18

The effects of interactions between intrinsic properties and network parame-
ters on bilateral phasing in a reduced leech heartbeat system

Adam Weaver*

Department of Biology, Saint Michael’s College, Colchester, VT 05439, USA

The “tweaking principle” for task switching
Salva Ardid"?*, Xiao-Jing Wang!3

L Department of Neurobiology and Kavli Institute for Neuroscience, Yale University, New Haven,
Connecticut 06510, USA

2 Department of Biology and Center for Vision Research, York University, Toronto, Ontario,
Canada, M3J 1P3

3 Center for Neural Science, New York University, New York, New York 10003, USA

Non-selective excitatory feedback and precise spike timing produce selective
relative inhibition

Biao Han'?*, Rufin Vanrullen!-

LCenter de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, 31062, France
2CNRS, UMR 5549, Faculté de Médecine de Purpan, CHU Purpan, Toulouse Cedex, 31052,

France
Two-dimensional patterns in neural fields subject to finite transmission speed

Eric Nichols'*, Kevin Green'?, Axel Hutt!, and Lennaert van Veen?

LINRIA Nancy, Team NeuroSys, 615 rue du Jardin Botanique, 54600 Villers-lés-Nancy, France
2Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North,
Oshawa, L1H 7K/ Ontario, Canada

Homeostatic structural plasticity — a key to neuronal network formation and
repair

Markus Butz!*, Arjen van Ooyen?

! Simulation Lab Neuroscience, IAS, Jilich Aachen Research Alliance, Forschungszentrum Jiilich
2 Computational Neuroscience Group, Neuroscience Campus Amsterdam, VU Universiteit Ams-
terdam

Connectivity from spike trains of neocortex neuron populations

Mark Hereld!?*, Jyothsna Suresh®, Mihailo Radojicic?, Lorenzo Pesce??, and Wim van
Drongelen!

L Computation Institute, The University of Chicago and Argonne National Laboratory, IL, USA
2 Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL, USA
3 Department of Pediatrics, The University of Chicago, Chicago, IL, USA
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P19

P20

P21

P22

P23

P24

Boundary Effects Across Filter Spatial Scales
Calden Wloka!?*, Neil Bruce®, and John Tsotsos!-?

L Electrical Engineering and Computer Science, York University, Toronto, ON, Canada, MS3J
1P3

2 Center for Vision Research, York University, Toronto, ON, Canada, M3J 1P3

3 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2

Modelling of Neocortical Neural Dynamics during Human Focal Seizures
Ernest Ho'?*, Wilson Truccolo!-?

L Department of Neuroscience, Brown University, Providence, RI, 02912, USA.
2 Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence,
RI, USA.

A digital hardware design for real-time simulation of large neural-system mod-
els in physical settings

Murphy Berzish*, Bryan P Tripp

Center for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada, N2L
3G1

Fast approximate models of large networks

Bryan P Tripp*

Center for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada, N2L 3G1

Optimal activity, avalanches and criticality in a model of the Primary Visual
Area

Germano S Bortolotto!, Jheniffer J Gonsalves!, Mauricio Girardi-Schappo'*, Thiago P Da
Silva?, Manasses P Nobrega?, Leonel T Pinto?, and Marcelo H R Henrique Tragtenberg?

L Department of Physics, Federal University of Santa Catarina, 88040-900, Floriandpolis, SC,
Brazil

2 Department of Chemical Engineering and Food Engineering, Federal University of Santa Cata-
rina, 88040-900, Floriandpolis, SC, Brazil

A map-based logistic neuron model: an efficient way to obtain many different
neural behaviors

Rafael V Stenzinger, Jheniffer J Gonsalves, Mauricio Girardi-Schappo*, and Marcelo H
R Henrique Tragtenberg

Physics Department, Federal University of Santa Catarina, Floriandpolis, SC — 88040-900,
Brazil
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P25

P26

P27

P28

P29

P30

P31

Evolutionary algorithm search for connectivity patterns conducive to bursting
in respiratory neural networks

Daniel Robb'*, Maya Shende!, Peter F Griffin', and Natalia Toporikova?

L Department of Mathematics, Computer Science and Physics, Roanoke College, Salem, VA
24153, USA
2 Department of Biology, Washington and Lee University, Lexington, VA 24450, USA

Asynchronous Coding in Neuronal Networks
Eric Kuebler*, Jean-Philippe Thivierge
School of Psychology, University of Ottawa, Ottawa, Ontario, Canada, KIN 6R5

Decision-making in a population of spiking neurons shaped by dynamics of
intrinsic noise

Lydia Richardson'*, Jean-Philippe Thivierge?

L Department of Biomedical Sciences, University of Ottawa, Ottawa, Ontario, Canada, KIN 9A8
2 Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada, KIN 9A8

A reverse-engineering approach to building our understanding of nervous sys-
tems

Herve Thevenon*

Imezio Ltd, Wellington, New Zealand

Parallel Spike Trains Analysis using Positive Definite Kernels
Taro Tezuka*

Faculty of Library, Information, and Media Science, University of Tsukuba, Tsukuba, 305-0821,
Japan

Self-organized cell assembly formation
Timo Nachstedt!?*, Florentin Worgotter!?, and Christian Tetzlaff!:

YThird Institute of Physics, Georg-August-Universitit, Géttingen, 37077, Germany
2 Bernstein Center for Computational Neuroscience, Géttingen, 37077, Germany

Development of avalanches and efficient communication in neuronal networks
Jean-Philippe Thivierge!*, Joseph Tauskela?

LSchool of Psychology and Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario
KIN 6N5, Canada
2 Human Health Therapeutics, National Research Council, Ottawa, Ontario K1A 0R6, Canada
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P32

P33

P34

P35

P36

P37

P38

Modeling emotion-creativity interaction following brief training
Xiaiqan Ding!, Rongxiang Tang?, Changhao Jiang®, and Yi-Yuan Tang®*

L Department of Physics, Dalian University of Technology, Dalian 116024, China

2 Department of Psychology, University of Texas at Austin, Austin, TX78705, USA
3 Capital University of Physical Education and Sports, Beijing 100191, China

4 Department of Psychology, Texas Tech University, Lubbock, TX79409, USA

Brief meditation increases fiber wiring between striatum and corona radiata
Yi-Yuan Tang'*, Huiyan Shao!, and Rongxiang Tang?

L Department of Psychology, Texas Tech University, Lubbock, TX 79409, USA
2 Department of Psychology, University of Texas at Austin, Austin, TX 78705, USA

Optical imaging of prefrontal cortex hemodynamic response in executive func-
tion induced by increased cardiovascular activity

Nicoladie D Tam*
Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

Computational optimization problems in social interaction and empathic so-
cial emotion

Nicoladie D Tam*
Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

The spatial structure of correlations in natural scenes shapes neural coding
in mouse primary visual cortex

Rajeev V Rikhye*, Mriganka Sur

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA

Some computational and comparative views derived from the quantitative
analysis of the cerebellar structure

Fahad Sultan*
Department of Cognitive Neurology, University Tibingen, Tibingen, 72076, Germany

Computational Modeling of the Development of Detailed Facial Representa-
tions along Ventral Pathway

Akihiro Eguchi*, Simon Stringer

Ozford Center for Theoretical Neuroscience and Artificial Intelligence, University of Ozford,
0X1 38UD, UK
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P39

P40

P41

P42

Combining machine learning and simulations of a morphologically realistic
model to study modulation of neuronal activity in cerebellar nuclei during
absence epilepsy

Parimala Alva'*, Lieke Kros?, Oscar H J Eelkman Rooda?, Chris I De Zeeuw®, Rod
Adams!, Neil Davey!, Freek E Hoebeek?, and Volker Steuber!

1Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB,
UK

2 Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands

3 Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amster-
dam, Netherlands

Information theoretical analysis of differences in information transmission in
cerebellar Purkinje cells across species

Kirsty Kidd*, James Bower, Daniel Polani, Neil Davey, and Volker Steuber

Science and Technology Research Institute, University of Hertfordshire, Hatfield, Hertfordshire,
AL10 9AB, UK

A system for automated analysis of conductance correlations involved in re-
covery of electrical activity after neuromodulator deprivation in stomatogas-
tric neuron models

Atish Malik!, Astrid A Prinz?, and Tomasz G Smolinski'*

L Department of Computer and Information Sciences, Delaware State University, Dover, DE
19901, USA
2 Department of Biology, Emory University, Atlanta, GA 30322, USA

Network models provide insight into how oriens-lacunosum-moleculare
(OLM) and bistratified cell (BSC) interactions influence local CA1l theta
rhythms

Katie Ferguson'?, Carey Huh?, Bénédicte Amilhon?, Sylvain Williams®, and Frances Skin-
ner1,4,2*

YToronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 258,
Canada

2 Physiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada

3 Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec,
H4G 1X6, Canada

4 Medicine (Neurology), University of Toronto, Toronto, Ontario, M5S 1A1, Canada
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P43

P44

P45

P46

Non-uniform dendritic distributions of Ih channels in experimentally-derived
multi-compartment models of oriens-lacunosum/moleculare hippocampal in-
terneurons

Vladislav Sekulic!?*, Tse-Chiang Chen®!, John Lawrence®®, and Frances Skinner!3?2

Y Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 258,
Canada

2 Department of Physiology, University of Toronto, Ontario, M5S 2J7, Canada

3 Department of Medicine (Neurology), University of Toronto, Ontario, M5S 2J7, Canada

4 Department of Medical Biophysics, University of Toronto, Ontario, M5S 2J7, Canada

5 Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula,
Montana, 59812, USA

6 NIH COBRE Center for Structural and Functional Neuroscience, University of Montana, Mis-
soula, Montana, 59812, USA

Modeling interneuron-specific (IS) interneurons in hippocampus
Alexandre Guet-Mccreight?*, Olivier Camiré®, Lisa Topolnik?®, and Frances Skinner!*?2

Y Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 258,
Canada

2 Physiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada

3 Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec City, Québec,
Canada, G1J 2G38

4 Medicine (Neurology), University of Toronto, Toronto, Ontario, M5S 1A1, Canada

Automated code generation from LEMS, the general purpose model specifi-
cation language underpinning NeuroML2

1,2%

Boris Marin'?*, Padraig Gleeson!, Matteo Cantarellil®*, Robert Cannon®*, and Angus

Silver!

L Department of Neuroscience, Physiology and Physiology, University College London, London,
UK

2CAPES Foundation, Ministry of Education of Brazl, Brasilia, DF, Brazil

3 Metacell LLC, San Diego, CA

4 Teatensor Limited, Edinburgh, UK

Neural Representation of Interval Timing Using Electrocorticography
Jonathan Flynn'*, Nitin Tandon?, and Harel Shouval

I Department of Neurobiology and Anatomy, UTHSC at Houston, TX 77030, USA
2 Department of Neurosurgery, UTHSC at Houston, TX 77030, USA
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P47

P48

P49

P50

P51

P52

Noise- and stimulus-dependence of the optimal encoding nonlinearities in a
simple ON/OFF retinal circuit model

Braden Brinkman'?* Alison Weber’?3_ Fred Rieke*®*. and Eric Shea-Brown!?23
) ) b

L Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA

2 Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
3 Program, in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA

4 Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA

Structured chaos shapes joint spike-response noise entropy in temporally
driven balanced networks

Guillaume Lajoie!3*, Jean-Philippe Thivierge?, and Eric Shea-Brown?®

L Dept. of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Got-
tingen, 37018, Germany

2Dept. of Psychology, University of Ottawa, Ottawa, Ontario, Canada, KIN 6N5

3Dept. of Applied Mathematics, University of Washington, Seattle, Washington, 98195, USA

When does recurrent connectivity improve neural population coding?

Joel Zylberberg!*, Eric Shea-Brown'!?

L Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
2 Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA

Spiking neural network model of cortical auditory source segregation
Lakshmi Krishnan'*, Michael Campos?, and Shihab Shamma!

L Department of Electrical and Computer Engineering, University of Maryland, College Park,
MD 20783, USA

2 Qualcomm Research, San Diego, CA 92121, USA

3 Department Etude Cognitive, Ecole Normale Suprieure, Paris 75005, France

Quadratic programming by spiking neuronal networks
Ruben Moreno-Bote?*, Philipp Schustek?

! Research Unit, Parc Sanitari Sant Joan de Deu and Universitat de Barcelona, Esplugues de
Llobregat, Barcelona, Spain, 08950

2Centro de Investigacion Biomédica en Red de Salud Mental (CIBERSAM), Esplugues de Llo-
bregat, Barcelona, Spain, 08950

Auditory stimulation modulates amygdala network dynamics
Francois Windels*, Peter Stratton, and Pankaj Sah

Queensland Brain Institute, The University of Queensland, Brisbane, Queensland

101



P53

P54

P55

P56

P57

P58

Mathematical modeling and analysis of spinal circuits involved in locomotor
pattern generation and frequency-dependent left-right coordination

Yaroslav Molkov!, Bartholomew Bacak?, and Ilya Rybak**

L Department of Mathematical Sciences, Indiana University — Purdue University Indianapolis,
IN 46202, USA
2 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia,
PA 19129, USA

Understanding and Distinguishing Three Time Scale Oscillations
Yangyang Wang!*, Pingyu Nan?, Vivien Kirk?, and Jonathan Rubin'

L Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
2 Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand

Multiple rhythms from one network: phase plane and stochastic analyses of
rhythmic activity in turtle motor circuits

Abigail Snyder*, Jonathan Rubin
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA

Measuring Synchronous Bursting and Spiking under Varying Second Order
Network Connectivity Statistics

David Burstein*, Jonathan Rubin

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15217, USA

The response of the subthalamo-pallidal networks of the Basal Ganglia to
oscillatory cortical input in Parkinson’s disease

Sungwoo Ahn', S. Elizabeth Zauber?, Robert Worth!?, and Leonid Rubchinsky!'**

I Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, IN
46032, USA
2 Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
3 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN
46202, USA
4Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,

IN 46032, USA

CaMKII regulates bidirectional long-term plasticity in cerebellar Purkinje
cells by a CaMKII/PP2B switch mechanism

Thiago M Pinto!?*, Maria Schilstra?, Volker Steuber?, and Antonio C Roque!

L Departamento de Fisica, FFCLRP, Universidade de Sio Paulo, Ribeirdo Preto, SP, 14040-901,
Brazil

2Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts, AL10
9AB, UK
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Electrical coupling in the retina ganglion cell layer increases the dynamic
range

Cesar Celis, Rodrigo Publio, and Antonio C Roque*
Department of Physics, FFCLRP, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

Differential effects of stimulus strength and volitional control in bistable per-
ception

James Rankin*, John Rinzel!-?

L Center for Neural Science, New York University, 4 Washington Place, 10003 New York, NY
2Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, 10012 New
York, NY

Long-term plasticity determines the postsynaptic response to correlated af-
ferents with multivesicular short-term synaptic depression

Alexander Bird!?3* Magnus Richardson®

Y Warwick Systems Biology Center, University of Warwick, Coventry CV4 7AL, UK
2Warwick Systems Biology DTC, University of Warwick, Coventry CV4 7TAL, UK
3School of Life Sciences, University of Warwick, Coventry CV4 7TAL, UK

Network dynamics contribute to a gamma rhythm highly robust to synaptic
variation

Steven Hauser!, Mark Reimers?*

L University of Virginia, Charlottesville, VA 22903, USA
2 Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
Richmond, VA 23298, USA

Muscarynic metabotropic receptor M4 modulates the Hippocampal CA1 LTP
possibly through local GABAergic interneurons

Querusche Zanona'*, Flavia Boos!, Ana Paula Crestani', Johanna Duran!, Maria Elisa
Calcagnotto?, and Jorge Quillfeldt!s3

I Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre,
RS, 90040-060, Brazil

2 Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS,
90035-003, Brazil

3 Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90540-
000, Brazil
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Estimation of artificial neuron parameters that obtain a required distribution
of coupled system periods in a hybrid network

Ryan Hooper!'*, Ruben Tikidzhi-Khamburyan?, Carmen Canavier??, and Astrid A Prinz*

L Dept. of Biomedical Engineering, Georgia Tech./Emory Univ., Atlanta, GA 30332

2Dept. of Cell Biol. and Anat., Louisiana State Univ. Hith. Sci. Ctr., New Orleans, LA 70112
3 Neurosci. Ctr. for Excellence, Louisiana State Univ. Hith. Sci. Ctr., New Orleans, LA 70112
4 Dept. of Biology, Emory Univ., Atlanta, GA 30322

Estimation of spike initiation zone and synaptic input parameters of a
Drosophila motoneuron using a morphologically reconstructed model

Cengiz Gunay®?*, Astrid A Prinz!

L Dept. Biology, Emory University, Atlanta, Georgia 30322, USA
2Dept. Math and Computer Sci., Emory University, Atlanta, Georgia 30322, USA

Auditory Object Feature Maps with a Hierarchical Network of Independent
Components?

Jean Rouat*, Simon Brodeur, and Eric Plourde

NECOTIS, Département génie électrique, génie informatique, Université de Sherbrooke, Québec,
Canada, JIK 2R1

The effect of trained parameters in Bayesian neural encoding models for the
auditory system

Eric Plourde*

Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, Que-
bec, J1K 2R1, Canada

A simple model for eletrocommunication — “Refractoriness Avoidance Re-
sponse”?

Rafael Tuma Guariento!*, Thiago S Mosqueiro!, Angel A Caputi?, and Reynaldo D
Pinto!

Lnstituto de Fisica de Sido Carlos, Universidade de Sao Paulo, Sio Carlos, SP 13566-590, BR
2 Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Bi-
oldgicas Clemente Estable, Montevideo, Uruguai

Afferent-hair cell connectivity as a possible source of spike train irregularity
in turtle vestibular bouton afferents

Bill Holmes*, Janice Huwe, Michael Rowe, and Ellengene Peterson

Department of Biological Sciences, Neuroscience Program, Ohio University, Athens, OH 45701,
USA
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Neural dynamics of perceptual detection under temporal uncertainty

Federico Carnevale'*, Omri Barak?, Victor De Lafuente®, Ranulfo Romo*®, and Néstor
Pargal

L Departmento de Fisica Teérica, Universidad Auténoma de Madrid, Cantoblanco 28049, Madrid,
Spain

2 Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel

3 Instituto de Neurobiologia, Universidad Nacional Auténoma de México, Querétaro 76230, Méx-
1co

4Bl Colegio Nacional, 06020 México DF, México

5 Instituto de Fisiologia Celular, Universidad Nacional Auténoma de México, 04510 México DF,
Mézxico

The dopamine signal in decision-making tasks with stimulus and timing un-
certainty

Stefania Sarno'*, Victor De Lafuente?, Ranulfo Romo®*, and Néstor Parga'

L Departamento de Fisica Tedrica, Universidad Auténoma de Madrid, Cantoblanco 28049,
Madrid, Spain

2 Instituto de Neurobiologia, Universidad Nacional Auténoma de México, Querétaro 76230, Méx-
1160)

3El Colegio Nacional, 06020 México DF, México

4 Instituto de Fisiologia Celular, Universidad Nacional Auténoma de México, 04510 México DF,
Meéxico

How Noise Correlations Impact the Amount of Information in Superior Col-
liculus: the Analysis of a Population with Shared Receptive Fields

Saba Farbodkia*, Kelly Shen, Gregory Day, and Martin Paré

Center for Neuroscience Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada

A dynamical systems model of the effect of Locus Coeruleus firing on single
trial cortical state dynamics

Houman Safaai'*, Ricardo Neves?, Oxana Eschenko?, Nikos Logothetis?, and Stefano
Panzeri!

LCenter for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini
31, 38068 Rovereto, Italy

2 Department of Physiology of Cognitive Processes, Maz Planck Institute for Biological Cybernet-
ics, 72076 Tibingen, Germany

What is the effect of noise on the interval timing neural network?
Sorinel A Oprisan'*, Derek Novo!, and Catalin V Buhusi?

L Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA
2 Department of Psychology, Utah State University, Logan, UT 84322, USA
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P75 Are phase resetting curves tunable?
Sorinel A Oprisan*, Davy Vanderweyen, and Derek Tuck
Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA
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Monday Posters
Posters P76 — P150

Dynamics of a network of excitatory and inhibitory neurons induced by de-
polarization block

Christopher Kim, Duane Nykamp*
School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, USA

Classifying chemical sensor data using GPU-accelerated bio-mimetic neuronal
networks based on the insect olfactory system

Alan Diamond!, Michael Schmuker?, Amalia Z. Berna?, Stephen Trowell®?, and Thomas
Nowotny!*

LSchool of Engineering and Informatics, University of Sussex, Falmer Brighton, BN1 9QJ, UK
2 Neuroinformatics & Theoretical Neuroscience, Inst. for Biology, Freie Universitit Berlin, 14195
Berlin, Germany

3CSIRO Ecosystem Sciences and Food Futures Flagship, GPO Box 1700 Canberra, ACT 2601,

Australia

Increased striatal inhibition in the basal ganglia leads to phase-synchronized

WITHEfring in a model of the globus pallidus externus-subthalamic nucleus network

DRAWIN ishka C Basnayake!'*, Taishin Nomura!»

P79

P80

L Division of Biophysical Engineering, School of Engineering Science, Osaka University, 560-
8531, Japan.
2 Department of Bioengineering, Graduate School of Engineering Science, Osaka University, 560-
8531, Japan.

Using multi-objective evolutionary algorithms to predict the parameters that
determine membrane resonance in a biophysical model of bursting neurons

David Fox'*, Hua-An Tseng', Horacio G. Rotstein?, and Farzan Nadim?!?

L Department of Biological Sciences, NJIT-Rutgers University, Newark, NJ 07102, USA
2 Department of Mathematical Sciences, NJIT, Newark, NJ 07102, USA

Stochastic Modulation of Oscillatory Neural Activity
Jérémie Lefebvre'*, Axel Hutt?, Kevin Whittingstall®, and Micah M. Murray*

L Laboratory for Investigative Neurophysiology, Center Hospitalier Universitaire Vaudois, Lau-
sanne, 1011, Switzerland

2INRIA CR Nancy - Grand Est, Team NEUROSYS, Villers-les-Nancy, 54600, France, EU

3 Department of Diagnostic Radiology, University of Sherbrooke, Sherbrooke, Québec, Canada,
JI1K 2R1
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EEG study of the cortical representation and classification of the emotional
connotations in words

Yuqgiao Gu'*, Massimo Poesio?, and Brian Murphy?

LOLIC, CIMeC - Center for Mind/Brain Sciences, Universita degli Studi di Trento, Rovereto
(TN), I - 38068, Italy

2School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO7
907, UK

3Knowledge & Data Engineering (EEECS) Queen’s University Belfast, UK

A dynamic model for delta rhythm fit to high-frequency cortical activity data
shows discrete functional connectivity in mouse cortex

Mark Reimers'*, Majid Mohajerani®*?, and Timothy Murphy?

L Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23221, USA.
2Canadian Center for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB,
Canada.

3 Department of Psychiatry, University of BC, Vancouver, BC, Canada.

Modeling task-specific manifestations of serotonin in Basal Ganglia using risk-
based decision making

B Pragathi Balasubramani', Srinivasa Chakravarthy'*, Balaraman Ravindran?, and
Ahmed A Moustafa3

L Dept. of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu,
India

2Dept. of Computer Science, Indian Institute of Technology Madras, Chennai 600036, Tamil
Nadu, India

3School of Social Sciences and Psychology, University of Western Sydney, Penrith NSW 2751,
Australia

The representation of semantic similarities between object concepts in the
brain: a hypergraph-based model

Skiker Kaoutar'*, Mounir Maouene?

LLIST Laboratory, FST, Abdelmalek Essaadi’s University, Tangier, Morocco
2 Department of computer science, ENSAT, Abdelmalek Essaadi’s University, Tangier, Morocco

108



P85

P86

P87

P88

P89

Temporal sequence learning via adaptation in biologically plausible Spiking
Neural Networks

Renato Duarte!?*, Peggy Series?, and Abigail Morrison!3*

! Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, 79104,
Germany

2 Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh,
Edinburgh, EHS8 9AB, UK

3Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience,
Jilich Research Center, Jilich, 52425, Germany

4 Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum,
44801, Germany

Calcium current improves coincidence detection of the LIF model

Yansong Chual?*, Moritz Helias!, and Abigail Morrison!?3

Unstitute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-
6), Juelich Forschungszentrum, Juelich, Germany

2 Bernstein Center Freiburg, Albert-Ludwigs University, Freiburg im Breisgau, Germany

3 Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr University of Bochum,
Bochum, Germany

Ephaptic Synchronization as a Mechanism for Selective Amplification of Stim-
uli

Aman Chawla*, Salvatore Morgera

Department of Electrical Engineering, University of South Florida, Tampa, FL33620, USA

A theory of decision-making using diffusion-to-bound models: choice, reaction-
time and confidence

Philipp Schustek!, Ruben Moreno-Bote!:?*

L Research Unit, Parc Sanitari Sant Joan de Deu and Universitat de Barcelona, Esplugues de
Llobregat, Barcelona, Spain, 08950

2Centro de Investigacion Biomédica en Red de Salud Mental (CIBERSAM), Esplugues de Llo-
bregat, Barcelona, Spain, 08950

Bursting neurons in the hippocampal formation convey information about
LFP features

Maria Constantinou'*, Daniel Elijah!, Daniel Squirrell!, Inés Samengo?, John Gigg!, and
Marcelo Montemurro®

L Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
2Centro Atémico Bariloche and Instituto Balseiro, San Carlos de Bariloche, 8400, Argentina
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Scaling of spike-timing based neuron model for mammalian olfaction with
network size

Bolun Chen!, Jan Engelbrecht'*, and Renato Mirollo?

L Physics Department, Boston College, Chestnut Hill, MA 02467, USA
2 Mathematics Department, Boston College, Chestnut Hill, MA 02467, USA

Splay states in networks of identical integrate-and-fire neurons
Jan Engelbrecht'*, Bolun Chen!, and Renato Mirollo?

L Physics Department, Boston College, Chestnut Hill, MA 02467, USA
2 Mathematics Department, Boston College, Chestnut Hill, MA 02467, USA

The computational properties of a simplified cortical column model
Nicholas Cain*;, Ram Iyer, Christof Koch, and Stefan Mihalas
Allen Institute for Brain Science, Seattle, WA 98103, USA

Entorhinal cortex stellate cell synchronization
Patrick Crotty*, Betty Anderson, Mary Rose Devine, and Anna Miettinen
Department of Physics and Astronomy, Colgate University, NY 13346, USA

Bifurcation analysis of anti-phase oscillations and synchrony in the tadpole
central pattern generator

Roman Borisyuk, Robert Merrison-Hort*

School of Computing € Mathematics, Plymouth University, Plymouth, Devon, PLj 8AA, UK

A linear-nonlinear model accurately predicts cortical responses to simultane-
ous electrical stimulation with a retinal implant

Kerry Halupka'?, Mohit Shivdasani?, Shaun Cloerty®®, David Grayden'?*3? Anthony N
Burkitt’?34, and Hamish Meffin®2*

L Neural Engineering Laboratory, Dept. of Electrical & FElectronic Engineering, University of
Melbourne, Parkville, VIC 3010

2 Center for Neural Engineering Laboratory, University of Melbourne, Parkville, VIC 3010

3 National ICT Australia, Victoria Research Lab, University of Melbourne, Parkville, VIC 3010
4 Bionics Institute, 384-388 Albert St, East Melbourne, VIC 3002

® National Vision Research Institute, Australian College of Optometry, Carlton, VIC 3053.

6 Dept. Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010.

110



P96

P97

P98

P99

P100

Spike history model for neural control

Tatiana Kameneva'>3* Miganoosh Abramian*, David Grayden'?3® Anthony N
Burkitt’?35, and Hamish Meffin!?3

! NewroEngineering Laboratory, Department of Electrical Electronic Engineering, The University
of Melbourne, Australia

2 Center for Neural Engineering, The University of Melbourne, Australia

3 National ICT Australia, Victoria Research Lab, Australia

4 Graduate School of Biomedical Engineering, The University of New South Wales, Australia

5 Bionics Institute, East Melbourne, Australia

A computational model on the goldfish Mauthner cell
Tuomo Miki-Marttunen®?*, Violeta Medan®?

L Departamento de Fisiologia, Biologia Molecular y Celular, Universidad de Buenos Aires, Ar-
gentina
2 Department of Signal Processing, Tampere University of Technology, Finland

3 Instituto de Fisiologia, Biologia Molecular y Neurociencias, Universidad de Buenos Aires -
CONICET, Argentina

Modeling astrocyte-neuron interactions in a tripartite synapse
Marja-Leena Linne'*, Riikka Havela!, Ausra Saudargiene?, and Liam McDaid?

L Computational Neuroscience Research Group, Department of Signal Processing, Tampere Uni-
versity of Technology, Tampere, Finland

2 Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania

3School of Computing and Intelligent Systems, University of Ulster, Northern Ireland

Partial correlation analysis for functional connectivity studies in cortical net-
works

Daniele Poli, Vito Paolo Pastore, Sergio Martinoia, and Paolo Massobrio*

Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), Uni-
versity of Genova, Genova, 16145, ITALY

Global network community and non-uniform cell density in the macaque
brain

Masanori Shimono®?*

LJSPS Fellow,
2 Department of Physics, University of Indiana, Bloomington, IN, 47405, USA
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The Neuroscience Gateway Portal: High Performance Computing Made Easy

Ted Carnevale'*, Amit Majumdar?, Subha Sivagnanam?, Kenneth Yoshimoto?, Vadim
Astakhov®, Anita Bandrowski®, and Maryann Martone?

L Neurobiology Department, Yale University Medical School, New Haven, CT 06520, USA
2San Diego Supercomputer Center, UC San Diego, La Jolla, CA 92093, USA

3 Center for Research in Biological Systems, UC San Diego, La Jolla, CA 92093, USA

4 Neuroscience Department, UC San Diego, La Jolla, CA 92093, USA

Probability-Based Nonlinear Modeling of Neural Dynamical Systems with
Point-Process Inputs and Outputs

Roman Sandler'*, Dong Song!, Robert Hampson?, Sam Deadwyler®, Theodore Berger!,
and Vasilis Marmarelis!

! Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
90089, USA
2 Department of Physiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA

Temperature-robust neural activity using feedback control of ion channel ex-
pression

Timothy O’Leary*, Eve Marder
Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA

Enhanced Attention Precedes Self-initiated Locomotion in an Electric Fish

1,2,3%

James Jun’?3* Andre Longtin’?3, and Leonard Maler??

L Department of Physics, University of Ottawa, Ottawa, ON, Canada, KIN 6N5

2 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,
KI1H 8M5

3 Center for Neural Dynamics of Physics, University of Ottawa, Ottawa, ON, Canada, K1H 8M5

Brain dynamic functional connectivity in patients with disorders of conscious-
ness

Veronica Maki-Marttunen®2*

! Department of Neuroimaging, FLENI, Buenos Aires 1428, Argentina
2CONICET, Buenos Aires, Argentina

Modulation of virtual arm trajectories via microstimulation in a spiking model
of sensorimotor cortex

Salvador Dura-Bernal'*, Kan Li?, Austin Brockmeier?, Cliff C Kerr!, Samuel Neymotin®,
Jose Principe?, Joseph Francis', and William W Lytton!

! Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY 11203, USA
2Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL
32611, USA
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Network-level effects of optogenetic stimulation in a computer model of
macaque primary motor cortex

Cliff C Kerr"?*, Daniel O’Shea?, Werapong Goo?, Salvador Dura-Bernal', Joseph Fran-
cis', Ilka Diester®, Paul Kalanithi®, Karl Deisseroth*, Krishna Shenoy*, and William W
Lytton!

L Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY,
USA

2 Complex Systems Group, School of Physics, University of Sydney, Sydney, NSW, Australia

3 Neurosciences Program, Stanford University, Stanford, CA, USA

4 Department of Bioengineering, Stanford University, Stanford, CA, USA

5 Ernst Striingmann Institute, Frankfurt, Hessen, Germany

6 Department of Neurosurgery, Stanford University, Stanford, CA, USA

Calcium regulation of HCN supports persistent activity associated with work-
ing memory: a multiscale model of prefrontal cortex

Samuel Neymotin'*, Robert A McDougal?, Michael Hines?, and William W Lytton!?

L Department of Physiology & Pharmacology, SUNY Downstate, Brooklyn, NY, 11203, USA
2 Department of Neurobiology, Yale Medical School, New Haven, CT, 06510, USA
3 Department of Neurology, Kings County Hospital Center, Brooklyn, NY, 11203, USA

A method for multi-simulator reaction-diffusion with NEURON
Robert A McDougal'*, Michael Hines!, and William W Lytton??

! Neurobiology, Yale University, New Haven, CT 06520, USA
2 Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
3Kings County Hospital, Brooklyn, NY 11203, USA

Modeling mGluR1 mediated synaptic depression in cerebellar Purkinje cells
Yizhen Su', Huo Lu?*

L Doctor of Osteopathic Medicine — GA-Philadelphia College of Osteopathic Medicine, Suwanee,
GA 80024, USA
2 Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee,
GA 30024, USA

Gain control via feedforward inhibition in noisy and delayed neural circuits

Jorge F Mejias’?*, Alexandre Payeur?, Erik Selin?, Leonard Maler®* and Andre
Longtin?4

LCenter for Neural Science, New York University, New York, NY, 10012, USA.

2 Department of Physics, University of Ottawa, Ottawa, ON, KIN6N5, Canada

3 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H8MS5,
Canada

4 Center for Neural Dynamics, University of Ottawa, Ottawa, ON, KIN6N5, Canada
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P112 A phenomenological model for self-initiated movement in electric fish

Alexandre Melanson!?*

Longtin' %4

, Jorge F Mejias®, James Jun'?*, Leonard Maler*, and Andre

L Department of Physics, University of Ottawa, Ottawa, Ontario, Canada, KIN 6N5

2Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada, KIN 6N5

3 Center for Neural Science, New York University, New York, NY 10012, USA

4 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario,
Canada, K1H 8M5

P113 Modeling Sound Pulse Counting in Inferior Colliculus
Richard Naud'*, Dave Houtman', Gary J. Rose?, and Andre Longtin®

L Department Physics, University of Ottawa, Ottawa, KIN 6N5, Canada
2 Department Biology, University of Utah, Salt Lake City, UT, 84112, USA

P114 Brain rhythms from delayed interaction of fluctuations
Alexandre Payeur!*, Leonard Maler?, and Andre Longtin'?

L Department of Physics, University of Ottawa, Ottawa, Canada, KIN 6N5
2 Department of Cell and Molecular Medecine, University of Ottawa, Canada, K1H SM5

P115 Finite size effect induces stochastic gamma oscillation in inhibitory network
with conduction delay

Gregory Dumont!?3* Georg Northoff>?, and Andre Longtin!s

L Physics Department, University of Ottawa, Canada

2Mind, Brain Imaging and Neuroethics, Royal Ottawa Healthcare, Institute of Mental Health
Research, Ottawa, Canada

3 Center for Neural Dynamics, University of Ottawa

P116 Mechanism-based modeling of time-varying magnetic fields effects on cortical
activity
Julien Modolo!?3*, Alex W Thomas'?3, and Alexandre Legros!#34
L Human Threshold Research Group, Lawson Health Research Institute, London, ON, N6A4V2,
Canada
2Department of Medical Biophysics, Western University, London, ON, Canada

3 Department of Medical Imaging, Western University, London, ON, Canada
4School of Kinesiology, Western University, London, ON, Canada
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WITHDRAWN: Mean field modeling of Basal ganglia — Functional conse-
quences of network heterogeneity

Jyotika Bahuguna!**, Mikael Lindahl?3, Jeanette Hellgren-Kotaleski®3, and Arvind Ku-

marl

! Bernstein Center Freiburg, Faculty of Biology, University of Freiburg, Germany

2 Computational Biology, School of Computer Science and Communication, KTH, Stockholm,
Sweden

3 Department Neuroscience, Karolinska Institute, Stockholm, Sweden.

Multimodal brain-computer interface communication in disorders of con-
sciousness

Sebastian Halder*, Ivo Kéathner, and Andrea Kiibler
Institute of Psychology, University of Wiirzburg, 97070 Wiirzburg, Germany

Fluctuation scaling in neural spike trains

Shinsuke Koyamal*3*

L Department of Statistical Modeling, The Institute of Statistical Mathematics, Tokyo, Japan
2ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency, Kyoto,
Japan

3 Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan

Rapid neural coding in the mouse retina with the first wave of spikes

Geoffrey Portelli'*, John Barrett?, Evelyne Sernagor?, Timothée Masquelier®*, and Pierre
Kornprobst!

! Neuromathcomp, INRIA, Sophia Antipolis, 06902, France

2 Institute of Neuroscience, Medical School, Newcastle University, Newcastle UK
3 Institut de la Vision, UPMC Université Paris 06, Paris, 75012, France
4CNRS, UMR 7210, Paris, 75012, France

Microsaccades enable efficient synchrony-based visual feature learning and
detection

Timothée Masquelier'"?*, Geoffrey Portelli®, and Pierre Kornprobst?

Lnstitut de la Vision, UPMC Université Paris 06, Paris, 75012, France
2CNRS, UMR 7210, Paris, 75012, France
3 Neuromathcomp Project Team, Inria Sophia Antipolis Méditerranée, 06902, France
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Principles of high—fidelity, high—density 3—D neural recording

Caroline Moore-Kochlacs'?*, Jorg Scholvin*, Justin Kinney?#, Jacob Bernstein*, Young-
Gyu Yoon®, Scott Arfin?, Nancy Kopell'?, and Ed S Boyden?46.7

L Graduate Program for Neuroscience, Boston University, Boston, MA 02215

2McGovern Institute, Massachusetts Institute of Technology, MA 02139

3 Department of Mathematics and Statistics, Boston University, Boston, MA 02215

4 Media Lab, Massachusetts Institute of Technology, MA 02139

5 Electrical Engineering and Computer Science, Massachusetts Institute of Technology, MA 02139
6 Brain and Cognitive Science, Massachusetts Institute of Technology, MA 02139

" Biological Engineering, Massachusetts Institute of Technology, MA 02139

Subthreshold resonance in biophysically-based models of low- and high-input

WITHeonductance motoneurons
DRAWN,; Chaud!?*, Andre Kohn'

P124

P125
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! Biomedical Engineering Laboratory, Dept. of Telecommunication and Control Engineering, Uni-
versidade de Sao Paulo, Sao Paulo, SP, Brasil

2Dept. of Electrical Engineering, Universidade Federal do Tridngulo Mineiro, UFTM, Uberaba,
MG, Brasil

Descriptive model for the prediction of motion direction from spike trains of
ON-OFF directional selective retinal ganglion cells

Aurel Martiniuc'*, Victor Bocos-Bintintan?, Florian Roehrbein!, and Alois Knoll!

L Department of Computer Science, Technical University Munich, Garching, 85748, Germany
2Faculty of Environmental Science & Engineering, Babes-Bolyai University, Cluj-Napoca,
400429, Romania

Correlation between spike statistics and T-type calcium channel activation in
simulated subthalamic nucleus neurons

Katsunori Kitano*

Department of Human and Computer Intelligence, Ritsumeikan University, Shiga 5258577,
Japan

Using fMRI to Characterize How Cortex Represents Limb Motions

Samir Menon'*, Jack Zhu!, Paul I Quigley', Franco Pestilli?, Kwabena Boahen?®, and
Oussama Khatib!

L Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
2 Department of Psychology, Stanford University, Stanford, CA, 94305, USA
3 Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
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Phase precession and the grid-to-place transformation
rge Jaramillo®?*, Richard Kempter!?

L Department of Biology, Institute for Theoretical Biology, Humboldt- Universitit zu Berlin, Berlin
10115, Germany
2 Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany

Memory association dynamics on neural network with dynamic synapses
Yuichi Katori*

Institute of Industrial Science, The University of Tokyo,

The emergence of cohorts of co-active neurons in random recurrent networks
provides a mechanism for orientation and direction selectivity

Dmitry Tsigankov*, Matthias Kaschube

Frankfurt Institute for Advanced Studies, Frankfurt, Germany

Modelling spatially realistic local field potentials in spiking neural networks
using the VERTEX simulation tool

Richard Tomsett!?*, Matt Ainsworth?®, Alexander Thiele*, Mehdi Sanayei*, Xing Chen?,
Alwin Gieselmann?, Miles Whittington?, Mark Cunningham*, and Marcus Kaiser!'**

LSchool of Computing Science, Newcastle University, NE1 7RU, UK
2 Institute of Ageing and Health, Newcastle University, NE4 5PL, UK
3 Hull York Medical School, University of York, YO10 5DD, UK
4 Institute of Neuroscience, Newcastle University, NE2 JHH, UK

Modelling local field potential features during network gamma oscillations

Richard Tomsett!?*, Matt Ainsworth?®, Alexander Thiele*, Mehdi Sanayei*, Xing Chen?,
Alwin Gieselmann?, Miles Whittington?, Mark Cunningham*, and Marcus Kaiser!'**

LSchool of Computing Science, Newcastle University, NE1 7RU, UK
2 Institute of Ageing and Health, Newcastle University, NE4 5PL, UK
3 Hull York Medical School, University of York, YO10 5DD, UK
4 Institute of Neuroscience, Newcastle University, NE2 JHH, UK

Deciphering the Axonal Transport Kinetics of Neurofilaments using the Flu-
orescence Photo-activation Pulse-Escape Method

1,2%

Yinyun Li'?*, Anthony Brown?®, and Peter Jung!

L Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA

2[II Institute of Physics-Biophysics, Georg-August-University Goettingen, Goettingen, 37077,
Germany

3 Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
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Computational model of human ventilation for electrical stimulation following
cervical spinal cord injury

Brian Hillen*, Ranu Jung

Department of Biomedical Engineering, Florida International University, Miami, Florida, 3317/,
USA

Stimulation-induced ectopicity and propagation windows in model damaged
axons

Mathieu Lachance'?*, Andre Longtin?, Catherine E Morris®, Na Yu?, and Béla Joos?

L Département de physique, Cégep de I’Outaouais — campus Féliz-Leclerc, Gatineau, Québec J8T
7T

2 Ottawa-Carleton Physics Institute, University of Ottawa, Ottawa, Ontario, Canada KIN 6N5
3 Neurosciences, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8M5

Action potential initiation in damaged axon initial segment
Louis Jacques'*, Catherine E Morris?, Andre Longtin', and Béla Joos!

! Department of Physics, University of Ottawa, Ottawa, Ontario, Canada, KIN 6N5
2 Neurosciences, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5

Fast rhythm cycles as atomic fragments of cortical processing and learning
Jenia Jitsev*

Functional Neural Circuits Group, Institute of Neuroscience and Medicine (INM-6) & Institute
of Advanced Simulation (IAS-6), Forschungszentrum Juelich, 52425 Juelich, Germany

Computational modeling of Temporal and Sequential Dynamics of Foraging
Decisions

Kanghoon Jung!?, Hye-Rann Jang!, Jerald Kralik?, and Jaeseung Jeong!'*

L Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea
2 Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA

Modeling the effects of neuronal morphology on dendritic chloride diffusion
and GABAergic inhibition

Namrata Mohapatra'*, Fidel Santamaria?, and Peter Jedlicka!

U nstitute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt, Ger-
many
2 Biology Department and Neurosciences Institute, The University of Texas at San Antonio, San

Antonio, USA
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Bursting suppression in propofol-induced general anesthesia as bi-stability in
a non-linear neural mass model

Pedro Ernesto Garcia Rodriguez*, Axel Hutt
INRIA CR Nancy-Grand Est, Equipe NeuroSys, France

Comparing calcium influx with high-frequency stimulation and burst stimu-
lation LTP protocols

Ximing Li, Bill Holmes*

Department of Biological Sciences, Neurosciences Program, Ohio University, Athens, OH 45701,
USA

Simulating Stimulus- and TMS-Induced Interference in Short-Term Memory
Using a Model of Prefrontal Cortex

Tyler Bancroft*, William Hockley, Philip Servos, and Jeremy Hogeveen
Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5

Spontaneous firing activity in climbing fiber is critical for a realistic bi-
hemispherical cerebellar neuronal network during robot control

Ruben Pinzon Morales*, Yutaka Hirata

Department of Computer Science, Chubu University Graduate School of Engineering, Kasugai,
487-8501, Japan

The number of granular cells in a cerebellar neuronal network model engaged
during robot control increases with the complexity of the motor task
Ruben Pinzon Morales*, Yutaka Hirata

Department of Computer Science, Chubu University Graduate School of Engineering, Kasugai,
487-8501, Japan

Integrating Systems Biology Markup Language (SBML) with NEURON

Anna Bulanova'*, Robert A McDougal!, Samuel Neymotin?, Victor Mutai', William W
Lytton??, and Michael Hines'

L Neurobiology, Yale University, New Haven, CT 06520, USA
2 Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
3 Neurology, Kings County Hospital, Brooklyn, NY 11203, USA

Dynamics of dichoptic masking in the primary visual cortex

Eva Chadnova!?*, Alexandre Reynaud!, Simon Clavagnier!, Daniel H. Baker®, Sylvain
Baillet?, and Robert F. Hess'

LMcGill Vision Research Unit, McGill University, Montreal, Quebec, H3A2T5, Canada
2McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Mon-
treal, Quebec, H3A2B/, Canada

3 Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
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The transfer function of the LIF model: from white to filtered noise
Jannis Schuecker'*, Markus Diesmann®?3, and Moritz Helias!?

L Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-
6), Jilich Research Center and JARA, Jilich, Germany

2RIKEN Brain Science Institute, Wako, Saitama, Japan

3 Medical Faculty, RWTH Aachen University, Germany

Kisspeptin mediation of estradiol-induced secretion of Luteinizing Hormone
and Prolactin

Natalia Toporikova'*, Philip Dishuck!, Joel Tabak?, and Cleyde Helena?

L Biology Department, Washington and Lee University, Lexington, VA, 24450, USA
2 Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA

SpineML and Brian 2.0 interfaces for using GPU enhanced Neuronal Net-
works (GeNN)

Thomas Nowotny!*, Alexander J Cope?, Esin Yavuz!, Marcel Stimberg?®, Dan F M Good-
man®*, James Marshall?, and Kevin Gurney®

LOCNR, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1
9QJ, UK

2 Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK

3 Institut d’Etudes de la Cognition, Ecole Normale Supérieure, Paris, France

4 Harvard Medical School, Harvard University, Boston, MA 02115, USA

5 Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK

A large-scale physiological model of Inferior Olive neurons reveals climbing
fiber intra-burst frequency depends on Olivocerebellar axon morphology

James Kozloski'*, John Wagner?, Heraldo Memelli®, and Viatcheslav Gurev!

L Computational Biology Center, IBM T.J. Watson Research Center
2IBM Research Collaboratory for Life Sciences-Melbourne, Carlton, Australia
3State University of New York at Stony Brook, NY, USA

Effects of short-term synaptic plasticity mechanisms on the dynamics of the
network conductances

Catalina Vich Llompart!*, Paolo Massobrio?, and Antoni Guillamon?

L Department of Mathematics and Computer Science, Escola Politécnica Superior, Universitat de
les Illes Balears, Mallorca, Palma, 07122

2Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), Univer-
sity of Genova, Genova, Italy

3Department of Applied Mathematics I, EPSEB, Universitat Politécnica de Catalunya,
Barcelona
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Dissecting estimation of conductances in subthreshold regimes
Catalina Vich Llompart'*, Antoni Guillamon?

L Dept. of Mathematics and Computer Science, Universitat de les Illes Balears, Palma, 07122,
Spain.

2Dept. of Applied Mathematics I, EPSEB, Universitat Politécnica de Catalunya, 08028,
Barcelona.

Seizure Dynamics: A Computational Model based Approach Demonstrating
Variability in Seizure Mechanisms

Richard Balson'?3* Dean Freestone!??, Mark Cook?3 Anthony N Burkitt!?** and
David Grayden!?*

! NewroEngineering Laboratory, Dept. of Electrical & Electronic Engineering, University of Mel-
bourne, Parkville, Victoria, 3010, Australia

2 Center for Neural Engineering, University of Melbourne, Carlton, Victoria, 3010, Australia

3 Department of Medicine St. Vincent’s Hospital Melbourne, University of Melbourne, Fitzroy,
Victoria, 3065

4The Bionics Institute, Fast Melbourne, Victoria, Australia, 3002

A computational model of the stellate cell microcircuit in the auditory brain-
stem

Timothy Esler!?, David Grayden®?*

! NewroEngineering Laboratory, Dept. of Electrical & Electronic Engineering, University of Mel-
bourne, Victoria 3010, Australia
2Center for Neural Engineering, University of Melbourne, Victoria 3010, Australia

Nitric oxide activity-dependent regulator compensates synaptic depression
and enhances metabolic efficiency in the auditory brainstem

Christophe Michel!, Matthias Hennig?, and Bruce Graham!*

LComputing Science and Mathematics, University of Stirling, Stirling, Scotland, FK9 JLA, UK
2School of Informatics, University of Edinburgh, Edinburgh, Scotland, EH8 9AB, UK

Neural frequency distributions may generate a new phase transition in models
for synchronization

Marcelo H R Henrique Tragtenberg*, Caio Tiedt, and Mauricio Girardi-Schappo

Department of Physics, Federal University of Santa Catarina, 88040-900, Floriandpolis, SC,
Brazil
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Coordination of adaptive working memory and reinforcement learning sys-
tems explaining choice and reaction time in a human experiment.

Guillaume Viejo!?*, Mehdi Khamassi''?, Andrea Brovelli®, and Benoit Girard!?

LSorbonne Universités, UPMC, Univ Paris 06, UMR 7222, ISIR, F-75005, Paris, France
2CNRS, UMR 7222, ISIR, F-75005, Paris, France

3 Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS - Aixz Marseille Université,
Marseille

Stabilizing working memory in spiking networks with biologically plausible
synaptic dynamics
Alexander Seeholzer*, Moritz Deger, and Wulfram Gerstner

School of Life Sciences, Brain Mind Institute and School of Computer and Communication
Sciences, Ecole polytechnique fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland

The role of interconnected hub neurons in cortical dynamics
Hesam Setareh*, Moritz Deger, and Wulfram Gerstner

School of Life Sciences, Brain Mind Institute and School of Computer and Communication
Sciences, Ecole polytechnique fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland

Neuromodulation by surprise: A biologically plausible model of the learning
rate dynamics

Mohammadjavad Faraji*, Kerstin Preuschoff, and Wulfram Gerstner

School of Life Sciences, Brain Mind Institute and School of Computer and Communication
Sciences, Ecole Polytechnique Federal de Lausanne, Lausanne, Swizerland

Hebbian-inspired rewiring of a random network replicates pattern of selectiv-
ity seen in PFC

Grace Lindsay'*, Mattia Rigotti!, Melissa R. Warden?, Earl K. Miller?, and Stefano Fusi'

L Department of Neuroscience, Columbia University, New York, NY 10026, USA

2 Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

3 The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02189, USA

Optimization of Membrane Excitability for Predictive Homeostasis of Spike
Generation

Jaekyung Kim*, Christopher Fiorillo

Bio and Brain Engineering, KAIST (Korea Advanced Institute of Science and Technology), Dae-
jeon 305-701 Korea
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Nonlinear Variability Measures for Respiratory Rhythm Generation
Sameer Alsharif, Chris Fietkiewicz*

Dept. of Elec. Eng. and Comp. Sci., Case Western Reserve University, Cleveland, OH, 44107,
USA

A connectionist model of context-based memory reconsolidation in the hip-
pocampus: the role of sleep

Justin Lines'*, Kelsey Nation?, and Jean-Marc Fellous!?:3

I Department of Psychology, University of Arizona, Tucson, Arizona 85721, USA
2Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
85719, USA

3 Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721, USA

Neurodynamical model for visual action recognition
Martin Giese*, Leonid Fedorov

Section Computational Sensomotorics, HIH / CIN, University Clinic Ttibingen, Germany

Multistable network dynamics through lateral inhibition: an efficient mecha-
nism for selective information routing.

Daniel Harnack*, Klaus Pawelzik, and Udo A Ernst

Institut fiir Theoretische Physik, Universitit Bremen, Bremen, Germany

A spiking-neuron model of memory encoding and replay in hippocampus
Oliver Trujillo*, Chris Eliasmith

Center for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1

A point process approach to identifying and tracking transitions in neural
spiking dynamics in the subthalamic nucleus of Parkinson’s patients

Xinyi Deng'*, Emad Eskandar®?, and Uri Eden!

L Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, 02215,
USA

2 Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, 02114,
USA

3 Harvard Medical School, Boston, Massachusetts, 02115, USA

Local circuit model of the subthalamo-pallidal network for the generation of
parkinsonian oscillations.

Osamu Shouno'?*, Kenji Doya!

LOkinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa
904-0495, Japan
2Honda Research Institute Japan Co., Ltd., Honcho, Wako, Saitama 351-0188, Japan
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Model of Dynamics of Intracellular Chloride Based on Fluorescent Imaging
Shiva Ghaani Farashahi', Jean Lienard!, Susan Ingram?, and Alexander Dimitrov!*

L Department of Mathematics, Washington State University, Vancouver, WA, USA
2 Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, WSU

Characterization of local invariances in the ascending ferret auditory system
Jean Lienard!, Stephen David?, and Alexander Dimitrov!*

L Department of Mathematics, Washington State University, Vancouver, WA, USA
2Oregon Health and Science University, Portland, OR, WSU

Model exchange with the NeuroML Model Database
Sharon Crook!?*, Suzanne Dietrich?

LSchool of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287,
USA

2School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

3School of Mathematical and Natural Sciences, Arizona State University, Phoeniz, Arizona 85609

USA

Hierarchical flow of sensory information in rat somatosensory cortex

Houman Safaail?*, Yanfang Zuo!, Miguel Maravall®, Stefano Panzeri?, and Mathew Di-
amond*

Y Tactile Perception and Learning Laboratory, International School for Advanced Studies
(SISSA), 34136 Trieste, Italy

2Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini
31, 38068 Rovereto, Italy

3Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Cientificas-
Universidad Miguel Herndndez, 03550 Sant Joan d’Alacant, Spain

Estimating the transfer function of cortical neurons : from simple models to
in vitro experiments

Yann Zerlaut*, Gilles Ouanounou, Bartosz Telenczuk, Charlotte Deleuze, Thierry Bal,
and Alain Destexhe

Unité de Neurosciences, Information and Complexité, CNRS UPR 3293, Gif-sur-Yvette 91198,
France

Measurement of propagating waves from local field potentials and unit activity
in the cortex of human and monkey.

Lyle Muller'*, Giacomo Benvenuti?, Frédéric Chavane?, and Alain Destexhe!

L Unité des Neurosciences, Information et Complexité (UNIC), CNRS Gif-sur-Yvette, 91198, FR
2 Insitut de Neurosciences de la Timone (INT), Marseille, 13005, FR
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Role of external stimulation in shaping evoked activity in a macroscopic model
of cortex

Matthieu Gilson*, Adrian Ponce-Alvarez, and Gustavo Deco

Dept. de Tecnologies de la Informacid i les Comunicacions, Universitat Pompeu Fabra, Barcelona
08018, SPAIN

A NineML-based domain-specific language for computational exploration of
connectivity in the cerebellar granular layer

Ivan Raikov!?*, Shyam Kumar S%?, Benjamin Torben-Nielsen, and Erik De Schutter!?

L Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son,
Okinawa, Japan
2 University of Antwerp, Antwerp, Belgium

Accurate approximation and MPI parallelization of spatial stochastic
reaction-diffusion in STEPS

Iain Hepburn®?*, Weiliang Chen?, and Erik De Schutter®?

L Theoretical Neurobiology, University of Antwerp, 2610 Antwerpen, Belgium
2 Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, 904-
0411, Japan

Reduction of multi-compartmental biophysical models by incremental, auto-
mated retuning of their parameters and synaptic weights
Thomas Close'*, Benjamin Torben-Nielsen!, and Erik De Schutter!?

L Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa,
Japan
2. Unidversity of Antwerp, Antwerp, Belgium

ATP consumption in molecular reactions of neuronal signaling
Nikon Rasumov*, Erik De Schutter

Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495
Japan

Microscopic cues shape neuronal morphology and microcircuits
Benjamin Torben-Nielsen*, Erik De Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate Uni-
versity, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan 904-0495

Multifunctional central pattern generator controlling walking and paw shak-
ing
Brian Bondy!, Alexander Klishko?, Boris Prilutsky?, and Gennady Cymbalyuk!'*

L Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302, USA
28chool of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
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Cellular mechanisms generating bursting activity in neuronal networks
Jingjing Cannon, William Barnett, and Gennady Cymbalyuk*
Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA

Bifurcation control of gait transition in insect locomotion
William Barnett*, Gennady Cymbalyuk
Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302, USA

Theoretical understanding of three-dimensional, head-free gaze-shift
Mehdi Daemi'**, Douglas Crawford!?

L Department of Biology, York University, Toronto, ON, Canada
2Center for Vision Research, York University, Toronto, ON, Canada

Neural coding strategies for extracting motion estimates from electrosensory
contrast

Stephen E Clarke'*, Richard Naud?, Andre Longtin?, and Leonard Maler!

L Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario,
Canada, K1H 8M5
2 Department of Physics, University of Ottawa, Ottawa, Ontario, Canada, KIN 6N5

The formation of multi-synaptic connections by the interaction of synaptic
and structural plasticity and their functional consequences

Michael Fauth*, Florentin Worgotter, and Christian Tetzlaff

Third Physics Institute, Bernstein Center for Computational Neuroscience, University Géttin-

gen, 37077, GERMANY

A hierarchical model of vision (HMAX) can also recognize speech
Matthew Roos*, Michael Wolmetz, and Mark Chevillet
Johns Hopkins University-Applied Physics Lab, Laurel, MD 20723, USA

The transformation of grid to place cells is robust to noise in the grid pattern
Amir Hossein Azizi*, Sen Cheng

Department of Psychology, Ruhr-University Bochum, Bochum, NRW, 44801, Germany

An activity-dependent computational model of development of the retinotopic
map along the dorsoventral axis in the primary visual cortex

Ryan Philips, Srinivasa Chakravarthy*

Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil
Nadu, India
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Neural Correlations in the Electrosensory Lateral Line Lobe of the Weakly
Electric fish, Apteronotus leptorhynchus: Analysis of Multi-Channel Record-
ings

Teerawat Monnor!, Michael G. Metzen!, and Maurice J Chacron!-?*

L Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
2 Department of Physics, McGill University, Montreal, QC, H3G 1Y6, Canada

Changes in stimulus envelope reveal two classes of peripheral electrosensory
neurons

Michael G. Metzen!, Maurice J Chacron'?*

L Department of Physiology, McGill University, Montreal, QC, Canada
2 Department of Physics, McGill University, Montreal, QC, Canada

Differential neural responses to naturally occurring envelopes in the elec-
trosensory system

Chengjie Huang'*, Maurice J Chacron'?

L Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
2 Department of Physics, McGill University, Montreal, Quebec H3G 1Y6, Canada

Parallel pathways at the auditory periphery

Marcos Cantul?*

L Center for Computational Neuroscience and Neural Technology (CompNet), Boston University,
Boston, MA, USA

2 Graduate Program for Neuroscience (GPN), Boston University, Boston, MA, USA

Simulating structural plasticity of large scale networks in NEST
Mikael Naveau*, Markus Butz

Stmulation Lab Neuroscience - Bernstein Facility for Simulation and Database Technology, In-
stitute for Advanced Simulation, Jilich Aachen Research Alliance, Forschungszentrum Jiilich,
52425 Jilich, Germany

Interspike intervals as a discrete time series with history and randomness
Sharon Norman'*, Rob Butera!?

LSchool of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332, USA

2 Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
USA
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Integration of functional cerebral networks and genetic expression: the dual
intertwined rings architecture of the cerebral cortex for real-time vs multi-
temporal information processing

Claudia Cioli'*, Salma Mesmoudi?, Derek Beaton®, David Rudrauf', Hervé Abdi®, and
Yves Burnod!

! Laboratoire d’Imagerie Biomédicale UMPC - INSERM U1146 - CNRS UMR 7178, Paris, F-
756534, France

2 Undversité Paris 1 Panthéon-Sorbonne, Equipement d’Excellence MATRICE, Paris, F-75231
38chool of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75080-
3021, USA

Goal-directed control with cortical units that are gated by both top-down
feedback and oscillatory coherence

Robert Kerr!??, David Grayden!?3%, Doreen Thomas®, Matthieu Gilson’?%7 and An-
thony N Burkitt!?34*

! NeuroEngineering Laboratory, Dept. of Electrical € Electronic Engineering, University of Mel-
bourne, Australia

2Center for Neural Engineering, University of Melbourne, Australia

3NICTA, Victoria Research Lab, University of Melbourne, Australia

4 Bionics Institute, East Melbourne, Australia

5 Department of Mechanical Engineering, University of Melbourne, Australia

6 Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Saitama, Japan

" Computational Neuroscience Group, University Pompeu Fabra, Barcelona, Spain

Hebbian learning in the MSO: emergence of interaural tuning
Pierre Yger'?34* Victor Benichoux!?3*, Marcel Stimberg"*3#, and Romain Brette!?3*4

Lnstitut d’Etudes de la Cognition, Ecole Normale Supérieure, Paris, France

2Sorbonne Universités, UPMC Univ. Paris 06, UMR S 968, Institut de la Vision, Paris, F-
75012, France

3INSERM, U968, Paris, F-75012, France

4CONRS, UMR 7210, Paris, F-75012, France

Brian 2: neural simulations on a variety of computational hardware
Dan F M Goodman'?, Marcel Stimberg®*>6* Pierre Yger®*>%, and Romain Brette®#6

L Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts,
02114, USA

2 Baton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts,
02114, USA

3 Institut d’Etudes de la Cognition, Ecole Normale Supérieure, Paris, France

4Sorbonne Universités, UPMC Univ. Paris 06, UMR_S 968, Institut de la Vision, Paris, F-
75012, France

SINSERM, U968, Paris, F-75012, France

6CNRS, UMR_ 7210, Paris, F-75012, France
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Spiking models of interaural level difference encoding - beyond the rate sub-

traction code
Martin Spencer®?34* Bertrand Fontaine®, and Romain Brette!?34

U Institut d’études de la cognition, Ecole Normale Supérior, Paris, 75005, France

2Sorbonne Universités, UPMC Univ. Paris 06, UMR_ S 968, Institut de la Vision, Paris, F-
75012, France

3INSERM, U968, Paris, F-75012, France

4CNRS, UMR_ 7210, Paris, F-75012, France

5 Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium

SPIKY: A graphical user interface for tracking spike train similarity
Thomas Kreuz*, Nebojsa Bozanic

Institute for Complex Systems, CNR, Sesto Fiorentino, Italy

Modulation of neuronal entrainability by epilepsy-associated currents and
noise: a spectral approach

Alla Borisyuk*
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Neural dynamics of the speed-accuracy trade-off
Dominic Standage'*, Da-Hui Wang?, and Gunnar Blohm!

! Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
2 Department of Systems Science, Beijing Normal University, Beijing, China

Molecular dependence of hippocampal bidirectional plasticity
Joanna Jedrzejewska-Szmek*, Andrew Chay, and Kim Avrama Blackwell

The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22050, USA

The topology of astrocyte networks controls the propagation of intercellular
calcium waves

Jules Lallouette!?*, Maurizio De Pitta!?3, Eshel Ben-Jacob3*, and Hugues Berry!?

LEPI Beagle, INRIA Rhone-Alpes, Villeurbanne, France

2LIRIS, Université de Lyon, UMR5205 CNRS-INSA, Villeurbanne, France
3School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel

4 Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
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Astrocytic Theory of Working Memory
Maurizio De Pittal»3* Eshel Ben-Jacob®®, and Hugues Berry!?

LEPI Beagle, INRIA Rhone-Alpes, Villeurbanne, France

2LIRIS, Université de Lyon, UMR5205 CNRS-INSA, Villeurbanne, France

3 Department of Statistics, The University of Chicago, 5734 S. University Ave., Chicago, IL,
USA

4School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel
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Fun and Recreation



Banquet

The party will be held at the "Chapelle du musée" on Tuesday July 29th at 19:00, which
is located at 2, Cote de la fabrique, Québec (QC), and is within a 12 minute walk from the
convention center (see below for directions).
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Party

The party will be held at the bar "Chez Maurice" on Monday July 28th at 19:00, which
is located at 575, Grande-Allée Est, Québec (QC), and is within a 10 minute walk from the
convention center (see below for directions).
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What to do in and around Québec City
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entertainers, singers, and artists, particularly at Old
Québec's own open-air art gallery, Rue du Trésor. High
atop Cape Diamond, stroll along the Dufferin

Terrace overlooking the St. Lawrence River and the
surrounding area. Or come watch the ice making its way
down the river in winter.

3
Petit-Champlain District & Place-

Royale

How about a trip back in time at Place Royale, where
Samuel de Champlain founded his first “abitation” in 1608?
And why not do some window shopping in the

nearby Petit-Champlain District while you're at it!

As you wander past period buildings along cobblestone
streets, enjoy the area's boutiques, art galleries,

and restaurants. There's magic in the air, particularly over
the Christmas holiday season. The oldest neighborhood in
North America is also home to Musée de |a civilisation, a

bridge between the past and future with its modern design
and fascinating exhibitions.

4
St. Lawrence River & Vieux-Port

de Québec

The St. Lawrence River—a massive presence cutting clean
across the Québec area—cannot be overlooked. Gateway
to America, it has been a part of the city’s economic
landscape for over 400 years. Harbour and trade activities
and the ever-growing number of cruise ships docking in

Credit: Stéphane Audet

Credit: Office du tourisme de
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the Vieux-Port de Québec testify to its importance. A

public market, park, bike path and shows also bring the
Vieux Port to life and help make this river-washed place
truly idyllic.

Near the bridges that span the River, the Aquarium du
Québec not only provides an outstanding view of the
majestic waterway, but also presents the marine mammals
and species that inhabit it. Close by, the Promenade
Samuel-De Champlain is also worth a gander: the River

flowing at your feet is simply spectacular!

5

Sainte-Anne-de-Beaupré Shrine

For many, the Sainte-Anne-de-Beaupré Shrine has been a

“place of miracles” for the past 350 years. It's well worth a
visit, whatever your beliefs.

The shrine, North America's oldest pilgrimage site,
attracts some one million visitors a year. Marvel at the
fabulous neo-Roman style basilica with its golden statue of
Saint Anne. Admire the hundreds of stained glass
windows, the nave, and the valuable works of art. Come
recharge your batteries at this beautiful place of worship in
the splendid countryside of the Céte-de-Beauprée region.

6

Montmorency Falls Park

This natural phenomenon is definitely not to be missed!

At 83 m high (30 m higher than Niagara Falls)
Montmorency Falls can be seen from all the way across the
St. Lawrence River in Lévis! But the best views are

from Parc de la Chute-Montmorency, where you can feel

Québec / Yves Tessier
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the full force—and spray—of the falls for yourself.

Take a gondola ride or walk the trails to the very top of the
falls. In winter the spray freezes at the foot of the falls to
form a huge “sugar loaf,” another intriguing Québec City
attraction.

Plains of Abraham

The scene of the 1759 battle between generals Wolfe and

Montcalm, the Plains of Abraham are the heart and lungs of

Québec City. Discover one of the world's largest and
finest urban parks.

The Plains are perfect for all kinds of activities (walking,
cycling, picnicking, cross-country skiing, and more) or
simply meeting up with friends. It was here that hundreds
of thousands of fans rocked to Paul McCartney and Céline
Dion as part of Québec City's 400th anniversary
celebrations, and it is here that Québec's national holiday
is celebrated every June 24. Musée national des beaux-

arts du Québec—renowned for its exhibits and collection
of Québec art—is only a short walk away.

Wendake

Enter the fascinating world of the Huron-Wendat First
Nation and embark on a history tour that will take you back
to the 17th century. The ancestral site of Wendake is a
window onto aboriginal culture! Dance shows and legends
will whisk you deep into this people's imagination,

while Musée huron-wendat and various craft stores invite

you to learn more about the nation's culture and traditional

Credit: Office du tourisme de
Québec / Jean-Guy Lavoie

Credit: Luc-Antoine
Couturier

Credit: Jean Louis Regis
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know-how.

A short walk through scenic natural surroundings leads
visitors to Kabir Kouba Falls by Riviere Saint-Charles, and
sampling the game featured in traditional Huron cuisine is
the perfect way to round out your voyage of discovery.

9

Parliament Hill

The province's Parliament Hill has never been so popular!
Québec's National Assembly convenes here in
the Parliament Building, a marvelous architectural treasure!

The gorgeous Fontaine de Tourny was awarded a gold
medal at the Paris World Fair in 1855. Today, it stands as a
legacy of Québec City's 400th anniversary celebrations,

turning heads with its 43 jets, water-themed sculptures,
and beautiful nighttime lighting. Nearby Observatoire de la

Capitale also turns visitors giddy with excitement with its
tremendous views of Québec City and area from a height
of 221 m!

10

fle d'Orléans

Imagine how beautiful Québec's countryside must have

been in the 19th century. In fact, it looked very much like
irresistible lle d'Orléans with its historic farms, churches,

and heritage homes.

Visiting the many artisans and farm stalls lining the route is
half the fun as you make your way from one quaint village
to the next. In season, enjoy the island's famous
strawberries and apples, as well as freshly baked bread,
wines, ice ciders, blackcurrant liqueurs, and other local

Credit: Office du tourisme de

Québec / Guy Lessard

Credit: Sébastien Larose
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delicacies.

11
Parc national de la Jacques-

Cartier

The spectacular Riviére Jacques-Cartier flows through a
deep valley surrounded by steep wall soaring up to 550 m

in height! Parc national de la Jacques-Cartier is protected
by Sépag (Québec's largest parks and outdoor recreation
network) so that you can enjoy all your favorite outdoor
pursuits.

With hiking, canoeing, kayaking, fishing, and camping all
available in breathtaking surroundings, it's no wonder that
the Jacques-Cartier region is known locally as Québec

City's “green crescent.” And the pace doesn't slow in
winter, so strap on your snowshoes, skies, or winter boots
and get ready to explore trail after trail of winter fun!

12
Chemin du Roy

Chemin du Roy—Canada's oldest highway—has linked
Québec City and Montréal since 1737. This scenic route
traverses beautiful pastoral landscapes as it winds its way
along the St. Lawrence River.

Visitors heading toward Portneuf from Québec's City Hall
pass through some of the province's prettiest villages,
featuring manors, mills, museums, heritage homes, and
other priceless heritage treasures. Nearly all of the road is
part of Québec's “Route verte” bike path network, enabling
cyclists to safely enjoy the scenery from the comfort of

Credit: Luc Rousseau

Credit: Yves Tessier
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