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General Information

Meeting venue

University of Economics
W. Churchill Sqg. 4

130 67 Prague 3

Czech Republic

The conference will be held on the campus of the University of Economics located in Zizkov - a city quarter
situated just few minutes from the city centre, close to the range of cultural attractions that Prague offers.
The campus is well served by public transport. The main train station is in walking distance, as well as the subway

line C, stop 'Hlavni nadrazi’, and the tram stop 'Husinecka’'.

Plan of the campus:
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Meeting room locations: See summary on back cover or single maps included in the corresponding sections
(Tutorials, Main Meeting, Workshops).



Getting to the conference venue

From the Ruzyné (Vaclav Havel) Airport:

...by Public transport:

A.

Get on the bus #119 (the bus stop is situated across the road from the arrivals hall — follow the sign) and go
to Nadrazi Veleslavin metro (and train) station. The bus from the airport runs every 20 minutes. Take the green
metro line A to Mustek metro station (4 stations). As there are two exits, remember to follow the sign for Vaclavske
Square. Take tram #9 in direction of Spojovaci and go to Husinecka tram stop (three stations) and then go down
to W. Churchill Square. The whole journey takes about 50 minutes. Ticket: 32 CZK.

B.

Get on the bus #100 and go to Zlicin metro station. The bus from the airport runs every 30 minutes. Take the
yellow metro line B to Namesti Republiky metro station (13 stations). As there are two exits, remember to follow
the sign for Masarykovo nadrazi. Take tram #5 or #26 and go to Husinecka tram stop (two stations) and then go
down to W. Churchill Square. The whole journey takes about 65 minutes. Ticket: 32 CZK.

...by Taxi:

The price for a taxi from the Ruzyne airport to the conference venue should be about 750 CZK (30 Euro).

From the Prague Main Train Station (Praha Hlavni nadrazi):

...by public transport:

Get on the tram number 5 (in the direction of OlSanské hrbitovy), 9 (in the direction of Spojovaci) or 26 (in the
direction of Nadrazi HostivaF). Go to Husinecka station (two stops), and then go down to W. Churchill square.
The whole journey takes about 5 minutes. Ticket: 24 CZK.

...on foot:

The conference location is within a 5 minute walking distance. At the underground exit, go to the right across the
street to the 'Bulhar’ junction and then under the railway bridge via Seifert Street to the W. Churchill Square.

From Mustek metro station:

Go to the upper level of the underground system at Mustek and follow the sign for Vaclavske namesti 4€*
Vodickova ulice to exit the system (there are two exits). Take tram #9 and go to Husinecka tram stop (three
stations) and then go down to W. Churchill square.

From Namésti republiky metro station:

Go to the upper level of the underground system at Namesti Republiky and follow the sign for Masarykovo nadrazi
to exit the system. Take tram #5 or #26 and go to Husinecka tram stop (three stations) and then go down to W.
Churchill Square.
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Information for poster presentation

The poster area is located in the Atrium. Poster boards will be numbered. Fixing adhesive material will be avail-
able. Poster orientation is portrait and maximum net dimensions are 180 cm x 95 cm (AOQ is smaller than 120 x
85 cm/ or 47 x 33 in).

Poster Sessions will be held on July 19 and 20 from 4 to 7 pm, and on July 21 from 3:30 to 6:30 pm. Poster set up:
Sunday, July 19, 2015: From 8 am to 4 pm
Monday, July 20, 2015: From 8 am to 4 pm
Tuesday, July 21, 2015: From 8 am to 3 pm

Poster should be removed:

Sunday, Monday, July 19 and 20, 2015: Next day morning latest
Tuesday, July 21, 2015: Before 7 pm

Posters that are not removed by the stated time will be discarded. The organisers are not responsible for loss or
damage to posters not removed by the given times.

Registration and locations

Registration will be held in Rajska building, please follow the signage. The entrance is from Italsk& street, green
building no. 4 on the plan of the campus.

Registration hours:

July 18: From 8 am to 6:30 pm
July 19: From 8 am to 7 pm

July 20: From 8 am to 7 pm

July 21: From 8 am to 6:30 pm
July 22: From 8:30 am to 6:30 pm
July 23: From 8:30 am to 6:30 pm

Locations (see also floor plans in the Tutorials, Main Meeting and Workshop sections):

What Where
Tutorials RB 113, RB 209, RB 210, RB 211, RB 212, RB 213
Keynote Lectures and Oral Sessions Vencovského aula, with live audio/video

transmission to LikeSova aula
Workshops NB C, NB D, RB 101, RB 113, RB 114,
RB 209, RB 210, RB 211, RB 212, RB 213

OCNS board/program committee meetings RB116

Welcome Reception Academic Club, 3rd floor - July 18
Exhibition Atrium, July 19-23

Coffee Breaks Atrium

11



Local information

Good to Know
Detailed information is available on the official Czech Republic website at www.czech.cz

Official Language
The official language of the meeting is English. Interpreting is not provided.

Insurance

The organisers do not accept responsibility for individual medical, travel or personal insurance. All participants
are strongly advised to take out their own personal insurance before travelling to Prague.

Currency & Banking

The Czech Crown (CZK) is the official currency of the Czech Republic. Exchange of foreign currency is avail-
able at the Prague International Airport and at most hotels, banks and exchange offices throughout the city.
International credit cards are accepted for payments in hotels, restaurants and shops.

Payment in cash (in EUR) is also available in some restaurants and shops, so please ask for details on-site if
necessary. You can find the official exchange rates on the Czech National Bank website (http://www.cnb.cz/en).

Electricity

The Czech Republic uses a 230 volt 50 Hz system. Sockets follow the standard also used in France, Belgium,
Denmark, Poland, Greece, Italy, Ireland and other countries and also have a grounding pin sticking out of the
power socket, which is also known as a type E socket.

Shopping
Most shops in Prague are open from 9:00 to 18:00, Monday to Saturday. Shops in the city centre are usually
open from 9:00 to 20:00, Monday to Sunday.

Time Zone

The Czech Republic is on Central European Time (CET), which is Greenwich Mean Time (GMT) + 1 hour. Note
that April to October is daylight saving time, i.e. GMT + 2 hours.

Tipping
Service is usually included in the bill in most bars and restaurants, but tips are welcome. If you consider the
service good enough to warrant a tip, we suggest about ten percent.

Tours

Tours are not a part of the meeting. If you wish to explore the city, check the possibilities in your hotel or choose
the tour directly at www.premiant.cz/eng

Transportation

Each registered participant receives one free public transportation pass at the registration desk when registering.
This ticket is valid within the dates of the meeting.
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o DOFRAVA
i
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INTEGROVANA
BRAIS DOPRAVA

Doklad opraviiujici k bezplatné prepravé v dopravnich prostfedcich
v pasmech P, 0, B (na Gzemi hl. m. Prahy) mimo viaky.

A document giving entitlement for free transport in zones

P, 0, B (in Prague area) except for PIT trains.

Platnost od/Validity from: 11. 9. 2013 do/to: 14.9.2013
Akce/Event: FENS Featured Regional Meeting

073667
PRAHA « PRAGUE * PRAGA » PRAG = PRAHA » PRAGUE » PRAGA » PRAG

PRAHA * PRAGUE * PRAGA * PRAG * PRAHA » PRAGUE * PRAGA * PRAG
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Prague has a very sophisticated public transportation system (Prague Integrated Transport, PIT, aka PID). It
consists of the metro, trams, buses and the funicular ascending Petfin Hill. Prague’s Metro system is quite new
and efficient. During peak hours, trains run every 1 or 2 minutes and off peak at least every 10 minutes.

e Metro:

The Metro system consists of three lines:
Line A — (green), Depo Hostivar — Motol
Line B — (yellow), Cerny Most — Zli¢in
Line C — (red), Lethany — Haje

The Metro operates from 5:00 to 24:00.

» Buses and trams:
Special lines No. 51-59 (trams) and 501-515 (buses) provide an all-night service.

Weather
The month of July is a typical summer month with daily high temperatures, which could exceed 30° C, followed
by thunderstorms and showers. You can check for current weather conditions in Prague at www.weather.com.

Important Telephone Numbers
112: General Emergency for Europe
150: Fire

155: Ambulance

156: Prague Municipal Police

158: Police

Free Wi-Fi
Free Wi-Fi is provided at the meeting venue. Each registered participant will receive his/hers own unique pass-
word.

Taxi Services

In the city centre, taxis are easy to flag down on the street, but we strongly recommend you use hotel taxis or
call a taxi by phone through the radio taxi service. We recommend you use the following taxi companies:

AAA Taxi: +420 14 0 14

Profi Taxi: +420 14 0 15

13



Gala Dinner

Date: Tuesday, July 21, 2015
Time: 19:30
Venue: Velka klaSterni restaurace (Strahov monastery restaurant)
Strahovské nadvori 302, Prague 1 (www.klasternirestaurace.cz/en)
Recommended dress code: Casual
How to get there: Tram #22 from Malostranska metro station, line A to Pohorelec station. Travel time from the
conference venue is about 40 minutes.
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Details

The Royal Canonry of the Premonstratensians at Strahov was established in the year 1140 by the Olomouc
Bishop with assistance from the Czech Duke and subsequently Czech King Vladislav Il. It is located near Prague
Castle at the beginning of the Royal Way.

Strahov monastery restaurant offers Czech and international cuisine including traditional Bohemian specialities
prepared according to age-old recipes. The wine served by the restaurant comes from its own Moravian Premon-
stratensian cellars and bears the name of the founder of the order — St. Norbert. You will enjoy a programme of
folk music by the Small Band of Mr. Kettner with demonstrations of traditional Bohemian and Moravian dancing
in period costumes.
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Several steps from the restaurant you can enjoy a beautiful view over Prague with the Petrin hill on the right and
Prague castle on the left. You can walk downhill to Lesser Town, Charles Bridge and the city centre.

CNS Party

Date: Monday, July 20, 2015

Time: From 19:00 to 23:00

Venue: Novoméstsky pivovar (New Town Brewery), Vodickova 20, Prague 2 (http://npivovar.cz/en)
Recommended dress code: Casual

Each participant gets coupons for two free drinks (beer, wine or soda) and one pretzel. Also included is a mini-
brewery guided tour in English language on a first-come first-served basis. Additional food and drinks can be
ordered throughout the evening, but are not covered by OCNS. Main courses cost about 8 to 12 USD, beer (0.5
liters) is about 2 USD.

Following the slowly disappearing tradition of past CNS parties, participants are encouraged to bring their own
unplugged musical instruments to tune with accordion players circulating among many brewery caves.

How to get there from the meeting venue/W. Churchill Square:

By tram No. 9...
...from Husinecka tram station to Vodickova tram station (3 tram stops are in-between: Hlavni nadrazi, Jindrisska,
Vaclavske namesti. Travel time 12 min).

By walking...
...for about 2 km (approx. 25 min).

@
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Restaurants

Selected restaurants close to the venue:

Seifertova Street

16

Restaurant Sklep

Czech and international cuisine, daily lunch menu
www.restauracesklep.cz/en

Restaurace Lavicka

Czech and international cuisine, vegetarian meals, daily lunch menu
www.restaurace-lavicka.cz/en

Restaurace Poja

Czech cuisine, steaks, pasta, daily lunch menu
www.restaurace-poja.cz

YES Burger

Burger restaurant
http://yesburger.cz

Secret of Raw

raw food restaurant, daily lunch menu
www.secretofraw.cz

Zizkovska galérka

stylish atmosphere of the 30's years of the First Republic
www.zizkovskagalerka.cz/en

Kufe v hodinach

Czech cuisine
www.kurevhodinkach.eu

Kredenc restaurant

Czech and international cuisine, daily lunch menu
www.kredencrestaurant.cz

Pizza Einstein

pizza, pasta, salads, daily lunch menu
WwWw.pizza-einstein.cz




City center, Vaclavské square area

» Restaurace Jama

American and mexican specialities
www.jamapub.cz/en

» U ceskych panu

old style restaurant, Czech cuisine
www.english.uceskychpanu.cz

» Trilobite

Czech and international cuisine, daily lunch menu
www.restauracetrilobit.cz

* McDonald, KFC, Burger King
Fast food restaurants

More Prague restaurant you can find at: www.restaurant-guide.cz/en

Where to go if you wish to take a quick break from the conference

» The park "Riegrovy sady" is located just a 5 minute walk from the conference venue. It is a mid-size, well
maintained park, with several garden restaurants inside. To go there from the conference building, get out
at the "ltalska" exit (next to registration desk). Walk UPHILL on Italska street for 150 meters, turn left onto
Vozova street. The entrance to the park will be on your right.

» The park and monument "Vitkov" is located about 1 km from the conference building. The park is placed
on a tall hill, with a military monument and an enormous statue (15th century commander Jan Zizka on a
horse) on the top of the hill. The main attraction is the beautiful view of Prague from the top of the hill. To
reach the Vitkov park, walk via "namesti Winstona Churchilla" and "Kostnicke namesti". Please refer to a
map, to avoid getting lost in the small streets.

17
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T1

T2

Tutorials

Rajskd Building (RB)
1*" Floor

isiln lift o
Entrance » the Academic club

Registration

Poster Sessions
Exhibition
Coffee Breaks

m| [TT

2" Floor

209

m [T

M Lecture Rooms M Stairs, elevators

Neural mass and neural field models
Room RB 212, 18-Jul-15

Axel Hutt, INRIA Nancy, France

Jeremie Lefebre, University of Lausanne, Switzerland
Alistair Steyn-Ross, University of Wakaito, New Zealand
Nicolas Rougier, INRIA Bordeaux, France

Modeling and analysis of extracellular potentials
Room RB 209, 18-Jul-15

Gaute T. Einevoll, Norwegian University of Life Sciences, Aas, Norway

Szymon Leski, Nencki Institute of Experimental Biology, Warsaw, Poland
Espen Hagen, Jiilich Research Centre and JARA, Julich, Germany
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T3

T4

T5

T6
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Modelling of spiking neural networks with the Brian simulator
Room RB 211, 18-Jul-15

Dan Goodman, Imperical College London, UK
Pierre Yger, Institut de la Vision, Paris, France
Romain Brette, Institut de la Vision, Paris, France
Marcel Stimberg, Institut de la Vision, Paris, France

Theory of correlation transfer and correlation structure in recurrent networks
Room RB 210, 18-Jul-15

Moritz Helias, Jilich Research Centre, Julich, Germany

Farzad Farkhoo, Freie Universitat Berlin, Berlin, Germany

Modeling of calcium dynamics and signaling pathways in neurons
Room RB 213, 18-Jul-15

Kim Avrama Blackwell, Krasnow Institute for Advanced Study, George Mason University, Fairfax VA,
USA

Interfaces in Computational Neuroscience Software: Combined use of the tools NEST, CSA and
MUSIC

Room RB 113, 18-Jul-15
Martin Jochen Eppler, Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database

Technology, Institute for Advanced Simulation, Jilich Aachen Research Alliance, Forschungszentrum
Jalich, Julich, Germany

Jan Moren, Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
Mikael Djurfeldt, PDC center for high performance computing, KTH and INCF Stockholm, Sweden




Main Meeting

‘ Station
Husinecka
Tram 5, 9, 26 '
Entrance
Old Building (SB) X
w. choreniisq @
Bus 135 Entrance
Enfrance b New Building (NB)
Menza Building (MB)
Rajské Building (RB)
Saturday July 18
9:00 — 16:30 Tutorials
17:00 - 17:15 Welcome and announcements
17.15-18:15 K1 Keynote 1:
Learning and variability in birdsong
Adrienne Fairhall
18:15 Welcome reception
Sunday July 19
9:00 - 9:10 Announcements
9:10-10:10 K2 Keynote 2:
Modeling Cortical Dynamics with Wilson-Cowan equations
Jack Cowan
10:10 — 10:40 Break
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10:40 — 11:00
11:00 — 11:20
11:20 — 11:40
11:40 — 12:00
12:00 — 13:30
13:30 — 14:10
14:10 — 14:30
14:30 — 14:50
14:50 — 15:20
15:20 — 15:40
15:40 — 16:00
16:00 — 19:00
9:00-9:10

(OX}

02

03

04

F1

05

06

o7

08

Oral session |: Large Networks

Limits to the scalability of cortical network models
Sacha van Albada*, Moritz Helias, and Markus Diesmann

The high-conductance state enables neural sampling in networks of LIF neurons
Mihai A. Petrovici*, llja Bytschok, Johannes Bill, Johannes Schemmel, and Karlheinz
Meier

Quantifying the distance to criticality under subsampling
Jens Wilting*, Viola Priesemann

Large-scale analysis of brain-wide electrophysiological diversity reveals novel
characterization of mammalian neuron types

Shreejoy Tripathy*, Dmitry Tebaykin, Brenna Li, Ogan Mancarci, Lilah Toker, and Paul
Pavlidis

Break for lunch

Oral session II: Synaptic plasticity

Featured oral 1:
Complex synapses as efficient memory systems
Marcus K Benna*, Stefano Fusi

Self-organization of computation in neural systems by interaction between home-
ostatic and synaptic plasticity
Sakyasingha Dasgupta*, Christian Tetzlaff, Tomas Kulvicius, and Florentin Woergoetter

A model for spatially periodic firing in the hippocampal formation based on inter-
acting excitatory and inhibitory plasticity
Simon Weber*, Henning Sprekeler

Break

Oral session lll: Single-cell properties and modeling

Whole-cell morphological properties of neurons constrain the nonrandom features
of network connectivity
Jugoslava Acimovic*, Maki-Marttunen Tuomo, and Marja-Leena Linne

Origin of the kink of somatic action potentials
Maria Telenczuk*, Marcel Stimberg, and Romain Brette

Poster session |: Posters P1 — P102

Monday July 20

9:10-10:10 K3

10:10 — 10:40

24

Announcements

Keynote 3:

The Dynamics of Resting Fluctuations in the Brain
Gustavo Deco

Break



10:40 - 11:00
11:00 - 11:20
11:20 - 11:40
11:40 — 12:00
12:00 — 14:00
13:30 — 14:10
14:10 — 14:30
14:30 — 14:50
14:50 — 15:20
15:20 — 15:40
15:40 - 16:00
16:00 — 19:00
19:00

09

010

011

012

F2

013

014

015

016

Oral session IV: Visual and auditory processing

An accurate circuit-based description of retinal ganglion cell computation
Yuwei Cui, Yanbin Wang, Jonathan Demb, and Daniel Butts*

Contrast-dependent Modulation of Gamma Rhythm in V1. a Network Model
Margarita Zachariou*, Mark Roberts, Eric Lowet, Peter de Weerd, and Avgis Hadjipapas

Downstream changes in firing regularity following damage to the early auditory
system
Dan Goodman*, Alain de Cheveigné, lan M. Winter, and Christian Lorenzi

Towards a computational model of Dyslexia
Sagi Jaffe-Dax*, Ofri Raviv, Nori Jacoby, Yonatan Loewenstein, and Merav Ahissar

Break for lunch

Oral session V: Neuromodulation and motor control

Featured oral 2:

Closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s
disease
Abbey Holt*, Max Shinn, and Theoden | Netoff

Investigating the Effect of Electrical Brain Stimulation using a Connectome-based
Brain Network Model
Tim Kunze*, Alexander Hunold, Jens Haueisen, Viktor Jirsa, and Andreas Spiegler

Closing the Loop: Optimal Stimulation of C. elegans Neuronal Network via Adap-
tive Control to Exhibit Full Body Movements
Julia Santos*, Eli Shlizerman

Break

Oral session VI: Information theory and correlations

Collective information storage in multiple synapses enables fast learning and slow
forgetting
Michael Fauth*, Florentin Woergoetter, and Christian Tetzlaff

Limited range correlations, when modulated by firing rate, can substantially im-
prove neural population coding
Joel Zylberberg*, Jon Cafaro, Maxwell Turner, Fred Rieke, and Eric Shea-Brown

Poster session |l: Posters P103 — P205

CNS Party
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9:00 - 9:10

Tuesday July 21

9:10-10:10 K4

10:10 — 10:40
10:40 — 11:00
11:00 — 11:20
11:20 - 12:00
12:00 - 13:30
13:30 - 14:30
14:30 — 14:50
14:50 — 15:10
15:10 - 15:30
15:30 — 18:30
18:30 — 19:30
19:30

9:00 — 19:00

26

o017

018

F3

019

020

Announcements

Keynote 4:

From single neurons to populations: Modeling neuronal dynamics across different
scales
Wulfram Gerstner

Break

Oral session VII: Oscillations and rhythms

Multiple mechanisms of theta rhythm generation in a model of the hippocampus
Ali Hummos*, Satish Nair

Modelling phase precession in the hippocampus
Angus Chadwick*, Mark van Rossum, and Matthew Nolan

Featured oral 3:

Control of gamma vs beta competition in olfactory bulb by the balance between
sensory input and centrifugal feedback control

Francois David, Emmanuelle Courtiol, Nathalie Buonviso, and Nicolas Fourcaud-
Trocme*

Break for lunch

OCNS Member Meeting

Oral session VIII: Network structure and dynamics

Self-Organization to sub-criticality
Viola Priesemann*

Large-scale brain dynamics: effect of connectivity resolution.
Timothée Proix*, Andreas Spiegler, and Viktor Jirsa

Break

Poster session lll: Posters P206 — P305

Time to travel to banquet location (60 mins)

Banquet

Wednesday July 22 and Thursday July 23

Workshops



w1

W2

W3

Workshops

Rajska Building (RB)
1t Floor

116 115 114

o lift to
eS| the Academic club

Registration

Poster Sessions
Exhibition
Coffee Breaks

2" Floor

M Lecture Rooms M Stairs, elevators

Invertebrates as Models of Cognition
Room RB 113, Wednesday and Thursday

James Marshall, Department of Computer Science, University of Sheffield
Kevin Gurney, Department of Psychology, University of Sheffield

Eleni Vasiliki, Department of Computer Science, University of Sheffield
Thomas Nowotny, Department of Informatics, University of Sheffield

Methods of Information Theory in Computational Neuroscience
Room NB C, Wednesday and Thursday

Alexander G Dimitrov, Washington State University
Michael C Gastpar, EPFL

Lubomir Kostal, Institute of Physiology CAS
Tatyana Sharpee, The Salk Institute

Simon R Schultz, Imperial College London

Stochastic neural dynamics
Room NB D, Wednesday and Thursday

Peter J Thomas, Case Western Reserve University
Justus Schwabedal, Georgia State University
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w8

W9

W10

w11
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Methods of System Identification for Studying Information Processing in Sensory Systems
Room RB 209, Wednesday

Aurel A Lazar, Columbia University
Mikko | Juusola, Department of Biomedical Science, University of Sheffield

Neuronal Oscillations: Computational models and dynamics mechanisms
Room RB 101, Wednesday

Horacio G Rotstein, New Jersey Inst of Technology

Beyond the canon: temporal and spatial multiscale organization in cortex
Room RB 210, Wednesday

Bill Lytton, SUNY Brooklyn
Wim van Drongelen, University of Chicago

Dendrite function and wiring: experiments and theory
Room RB 211, Wednesday
Michiel Remme, Institute for Theoretical Biology, Humboldt University Berlin

Hermann Cuntz, Ernst Striingmann Institute, Frankfurt
Benjamin Torben-Nielsen, Okinawa Institute of Science and Technology

Rate vs. temporal coding schemes: mutually exclusive or cooperatively coexisting
Room RB 212, Wednesday

Milad Lankarany, Neuroscience and Mental Health, Hospital for Sick Children, Toronto
Steven A Prescott, Neuroscience and Mental Health, Hospital for Sick Children, Toronto

Spike initiation: models and experiments
Room RB 213, Wednesday

Michele Giugliano, Universiteit Antwerpen
Romain Brette, Institut de la Vision, Paris

Neuromechanics and integrative motor control
Room RB 114, Wednesday

Martin Zapotocky, Institute of Physiology of the Czech Academy of Sciences, Prague
Taishin Nomura, Dept Mechanical Science and Bioengineering, Osaka University

Computational Models of Midbrain Dopamine Neurons and Dopaminergic Signaling
Room RB 209, Thursday

Carmen Canavier, LSU Health Sciences Center, New Orleans

Computation, Dysfunction, and the Brain

Room RB 213, Thursday

Rowshanak Hashemiyoon, Dept Stereotactic and Functional Neurosurgery, University Hospital of
Cologne

Michel Christoph, Switzerland Campus Biotech




W13

W14

W15

W16

W17

Synaptic plasticity and homeostasis
Room RB 101, Thursday

Pierre Yger, Institut de la Vision, Paris
Matthieu Gilson, Universitat Pompeu Febra, Barcelona

High-performance computing in neuroscience - from physiologically realistic neurons to full-
scale brain models

Room RB 210, Thursday
Wolfram Schenck, SimLab Neuroscience, Juelich Supercomputing Centre, Forschungszentrum
Juelich, Germany

Alex Peyser, SimLab Neuroscience, Juelich Supercomputing Centre, Forschungszentrum Juelich,
Germany

Markus Butz-Ostendorf, Juelich, Germany

Metastable Dynamics of Neural Ensembles Underlying Cognition

Room RB 211, Thursday

Emili Balaguer-Ballester, Bournemouth University and Bernstein Center for Computational Neuro-
science, University of Heidelberg

Maurizio Mattia, Istituto Superiore di Sanita Rome, Italy

Ruben Moreno-Bote, Fundacio Sant Joan de Deu Barcelona, Spain

Open collaboration in computational neuroscience
Room RB 212, Thursday

Padraig Gleeson, University College London

Postdoc and student career strategy workshop
Room RB 209, Wednesday

Jorge Meijas, Computational Lab of Cortical Dynamics, New York University, NY, USA
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Tutorials

T1 Neural mass and neural field models
Room RB 212, 18-Jul-15

Axel Hutt, INRIA Nancy, France

Jeremie Lefebre, University of Lausanne, Switzerland
Alistair Steyn-Ross, University of Wakaito, New Zealand
Nicolas Rougier, INRIA Bordeaux, France

The brain exhibits dynamical processes on different spatial and temporal scales. Single neurons have a size of
tens of micrometers and fire during few milliseconds, whereas macroscopic brain activity, such as encephalo-
graphic data or the BOLD response in functional Magnetic Resonance Imaging, evolve on a millimeter or cen-
timeter scale during tens of milliseconds. To understand the relation between the two dynamical scales, the
mesoscopic scale of neural populations between these scales is helpful. Moreover, it has been found experi-
mentally that neural populations encode and decode cognitive functions. The tutorial presents a specific type of
rate-coding models which is both mathematically tractable and verifiable experimentally. It starts with a physi-
ological motivation of the model, followed by mathematical analysis techniques for neural mass models in the
presence of noise, and applications to general anaesthesia and cognitive functions.

References
[1] Paul C. Bressloff. Spatiotemporal Dynamics of Continuum Neural Fields. J. Phys. A 45 (2012) 033001.

[2] P. C. Bressloff and S. Coombes. Physics of the extended neuron. Int. J. Mod. Phys. B 11:2343-2393, 1997.

[3] A. Hutt and L. Buhry, Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural
populations by traversing neural scales: application to propofol-induced anaesthesia. J Comput Neurosci
37(3), 417-437, 2014.

[4] J. Lefebvre, A. Hutt, J.-F. Knebel, K. Whittingstall and M. Murray. Stimulus Statistics shape oscillations in
nonlinear recurrent neural networks, J Neurosci, 35(7): 2895-2903, 2015.

[5] Steyn-Ross, M., Steyn-Ross, D., Sleigh, J. Interacting Turing-Hopf instabilities drive symmetry-breaking
transitions in a mean-field model of the cortex: a mechanism for the slow oscillation, Physical Review X 3,
021005, 2013.

[6] M. Steyn-Ross, D.A. Steyn-Ross, M.T. Wilson and J.W. Sleigh. Modelling brain activation patterns for the
default and cognitive states, Neurolmage 45(2):298-311, 2009.

[7] G. Is. Detorakis and N. P. Rougier. Structure of Receptive Fields in a Computational Model of Area 3b of
Primary Sensory Cortex, Frontiers in Computational Neuroscience 8:76, 2014.

[8] Rougier N.P. and J. Vitay. Emergence of Attention within a Neural Population, Neural Networks 19.5, 2006.

[9] Hindriks R. and M. van Putten. Meanfield modeling of propofol-induced changes in spontaneous EEG
rhythms Neuroimage 60 (4) pp. 2323-2334, 2012.

[10] Wang K., M.L. Steyn-Ross, D.A. Steyn-Ross, M.T. Wilson, J.W. Sleigh. EEG slow-wave coherence changes
in propofol-induced general anesthesia: experiment and theory Front Syst Neurosci 8 p.215, 2014.

[11] Steyn-Ross ML, DA Steyn-Ross, JW Sleigh. Modelling general anaesthesia as a first-order phase transition
in the cortex. Prog Biophys Mol Biol 85 (2-3) pp. 369-385, 2004.
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T2 Modeling and analysis of extracellular potentials
Room RB 209, 18-Jul-15

Gaute T. Einevoll, Norwegian University of Life Sciences, Aas, Norway
Szymon Leski, Nencki Institute of Experimental Biology, Warsaw, Poland
Espen Hagen, Julich Research Centre and JARA, Julich, Germany

While extracellular electrical recordings have been the main workhorse in electrophysiology, the interpretation
of such recordings is not trivial [1,2,3]. The recorded extracellular potentials in general stem from a complicated
sum of contributions from all transmembrane currents of the neurons in the vicinity of the electrode contact. The
duration of spikes, the extracellular signatures of neuronal action potentials, is so short that the high-frequency
part of the recorded signal, the multi-unit activity (MUA), often can be sorted into spiking contributions from the
individual neurons surrounding the electrode [4]. No such simplifying feature aids us in the interpretation of the
low-frequency part, the local field potential (LFP). To take a full advantage of the new generation of silicon-based
multielectrodes recording from tens, hundreds or thousands of positions simultaneously, we thus need to develop
new data analysis methods grounded in the underlying biophysics [1,3,4]. This is the topic of the present tutorial.
In the first part of this tutorial we will go through

» The biophysics of extracellular recordings in the brain,

» a scheme for biophysically detailed modeling of extracellular potentials and the application to modeling
single spikes [5-7], MUAs [8] and LFPs, both from single neurons [9] and populations of neurons [8,10,11],
and

* methods for

— estimation of current source density (CSD) from LFP data, such as the iCSD [12-14] and KCSD meth-
ods [15], and

— decomposition of recorded signals in cortex into contributions from various laminar populations, i.e., (i)
laminar population analysis (LPA) [16,17] based on joint modeling of LFP and MUA, and (ii) a scheme
using LFP and known constraints on the synaptic connections [18]

In the second part, the participants will get demonstrations and, if wanted, hands-on experience with

« LFPy (software.incf.org/software/LFPy) [19], a versatile tool based on Python and the simulation program
NEURON [20] (www.neuron.yale.edu/) for calculation of extracellular potentials around neurons, and

* tools for iCSD analysis, in particular,

— CSDplotter (for linear multielectrodes [8]) (software.incf.org/software/csdplotter)
— iICSD 2D (for 2D multishank electrodes [14]) (software.incf.org/software/icsd-2d)

Further, new results from applying the biophysical forward-modelling scheme to predict LFPs from comprehen-
sive structured network models, in particular

« the Traub-model for thalamocortical activity [21], and

« the Potjans-Diesmann model of the early sensory cortex microcircuit using hybridLFPy
(github.com/espenhgn/hybridLFPy) [22,23],

will be presented.
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T3 Modelling of spiking neural networks with the Brian simulator
Room RB 211, 18-Jul-15

Dan Goodman, Imperical College London, UK
Pierre Yger, Institut de la Vision, Paris, France
Romain Brette, Institut de la Vision, Paris, France
Marcel Stimberg, Institut de la Vision, Paris, France

Brian [1,2] is a simulator for spiking neural networks, written in the Python programming language. It focuses on
making the writing of simulation code as quick as possible and on flexibility: new and non-standard models can
be readily defined using mathematical notation[3]. This tutorial will be based on Brian 2, the current Brian version
under development.

We will start by giving a general introduction to Brian 2 and discussing differences between Brian 1 and Brian 2,
with specific recommendations on how to convert scripts between the two Brian versions. We will then focus on
the specification of neuronal and synaptic models, discussing the various ways Brian offers to implement non-
standard models. We will finish by demonstrating Brian’s code generation facilities, including the newly introduced
"standalone" mode, giving recommendations for improving the simulation performance.

References
[1] http://briansimulator.org
[2] Goodman DFM and Brette R (2009). The Brian simulator. Front Neurosci doi:10.3389/neuro.01.026.2009.

[3] Stimberg M, Goodman DFM, Benichoux V, and Brette R (2014). Equation-oriented specification of neural
models for simulations. Frontiers in Neuroinformatics 8. doi:10.3389/fninf.2014.00006

36



T4 Theory of correlation transfer and correlation structure in recurrent networks
Room RB 210, 18-Jul-15
Moritz Helias, Jilich Research Centre, Jilich, Germany
Farzad Farkhoo, Freie Universitat Berlin, Berlin, Germany

In the first part of this tutorial, we introduce the mathematical tools to determine firing statistics of neurons receiv-
ing fluctuating input form a network. We show how one can apply an efficient Fokker-Planck method to derive
the neurons’ output statistics whenever the input can be assumed to be Gaussian white (iid) noise. We further
study more realistic cases, where the input fluctuations depart from the iid assumptions. Using the integrate-
and-fire neuron model, we will demonstrate how to compute the firing rate, auto-correlation and cross-correlation
functions of the output spike trains. The transfer function of the output correlations given the time scale of the
input correlations will be discussed [Moreno-Bote and Parga, 2006, Brunel et al 2001]. In particular, we will show
that the output correlations are generally weaker than the input correlations and how the working regime of the
neuron shapes the cross-correlation functions [Ostojic et al., 2009; Helias et al., 2013]. We conclude the first
part by investigating the relation between neurons’ pairwise correlation due common fluctuations and their firing
rates [de la Rocha et al., 2007].

In the second part, we will consider correlations in recurrent random networks. Using a binary neuron model
[Ginzburg & Sompolinsky, 1994], we explain how mean-field theory determines the stationary state and how the
network-generated noise linearizes the single neuron response. The resulting linear equation for the fluctuations
in recurrent networks is then solved to obtain the correlation structure in balanced random networks. We discuss
two different points of view of the recently reported active suppression of correlations in balanced networks by
fast tracking [Renart et al., 2010] and by negative feedback [Tetzlaff et al., 2012]. Finally, we consider extensions
of the theory of correlations of linear Poisson spiking models [Hawkes, 1971, Pernice et al. 2011] to the leaky
integrate-and-fire model [Trousdale et al. 2012, Pernice et al. 2012] and present a unifying view of linear response
theory of weak correlations [Grytskyy et al, 2013].
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T5 Modeling of calcium dynamics and signaling pathways in neurons
Room RB 213, 18-Jul-15

Kim Avrama Blackwell, Krasnow Institute for Advanced Study, George Mason University, Fairfax VA,
USA

Modeling signaling pathways in neurons is of increasing importance for understanding brain function. Biochemi-
cal and molecular mechanisms are crucial for the synaptic and intrinsic plasticity underlying learning and informa-
tion processing, neuronal development, as well as pathological degeneration. Novel biosensors, live cell imaging
and other techniques are increasing the quantity of data and revealing the complexity of molecular processes
generating these phenomena.

The purpose of this tutorial is to introduce techniques for modeling calcium dynamics and signaling pathways in
neurons. The first part presents the biological mechanisms (channels, diffusible second messengers, enzymes,
kinases) that comprise signaling pathways and control calcium dynamics. The second part presents the math-
ematical equations used to model the components of these pathways. The third part of the tutorial provides an
overview of some of the software packages available for such modeling, and explains how to develop determinis-
tic and stochastic models using several of these software tools, including xppaut, genesis/Moose, smoldyn, and
NeuroRD.
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[2] Blackwell KT. Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J
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T6 Interfaces in Computational Neuroscience Software: Combined use of the tools NEST, CSA and
MUSIC

Room RB 113, 18-Jul-15
Martin Jochen Eppler, Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database

Technology, Institute for Advanced Simulation, Jilich Aachen Research Alliance, Forschungszentrum
Jilich, Julich, Germany

Jan Moren, Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
Mikael Djurfeldt, PDC center for high performance computing, KTH and INCF Stockholm, Sweden

In this workshop we demonstrate how the MUSIC and ConnectionGenerator interfaces allow the NEST simulator
to work as a module in a larger simulation and use external libraries for generation of connectivity.

Current simulation environments in computational neuroscience, such as NEURON, NEST or Genesis, each
provide many tools needed by the user to carry out high-quality simulation studies. However, since models are
described differently in each environment, and even may depend on specific features of the environment, it is
hard to move models between environments and the modeler is stuck with the tools of the environment for which
the model was developed.

This also makes it difficult to build larger simulations which re-use existing models as components. As systems
grow more complex and encompass more subsystems they rapidly become unwieldy to develop. Monolithic
systems make it infeasible to reuse separate model implementations for parts of the system.

Furthermore, in other fields of numerical computation, the modeler often has the freedom to assemble the tools
of choice out of a set of mesh generators, solvers, etc. Again the monolithic structure of software in computa-
tional neuroscience prevents this. We are not free to choose among wiring routines, solvers or neuronal spike
communication frameworks.

Standard model description languages, such as PyNN, NeuroML and NineML provide a partial solution by unify-
ing the description of models, thereby improving reproducibility and making it easier to move the model between
environments. Environments structured as frameworks, such as Genesis3 or MOOSE, also address the prob-
lems described above. Our aim with this workshop is to promote the use of generic interfaces in computational
neuroscience software.

Interfaces allow for the use of alternative implementations of software components. In this tutorial, we demon-
strate and teach the tools NEST (a network simulator), CSA (a connectivity description language) and MUSIC (a
tool for simulations across multiple environments) and show how they interact through generic interfaces.

MUSIC is an interface and library which enables connecting separate models in real-time, even when they are
implemented in separate simulator systems. The connections defined in MUSIC ports effectively implement an
API for other models to use. This enables division of development of complex systems across areas and team
members, and interfacing the model with outside data sources and sinks. The ConnectionGenerator interface
allows to use different connection generating libraries in the simulators supporting the interface. This lets you
plug in the library of choice for more freedom in describing your models.

Hands-on sessions will allow participants to work on a coupling between own code and either the Connection-
Generator interface or MUSIC. Support is provided by the authors and experienced users of the interfaces.
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Invited Presentations

Adrienne Fairhall
Department of Physiology and Biophysics,
University of Washington, Seattle, USA

K1 — Learning and variability in birdsong

The birdsong system has become a paradigmatic example of biological learning. We will discuss how detailed
biological responses can help this system to implement reinforcement learning. In particular, we will discuss the
potential role of a newly identified excitatory neural signal in basal ganglia and how it may help to modulate basal
ganglia synchrony and the variability required for learning.

Jack Cowan

Mathematics Department, Neurology Department,
and Committee on Computational Neuroscience,
University of Chicago, Chicago, USA

K2 — Modeling Cortical Dynamics with Wilson-Cowan equations

Experimental data collected over the last decade indicates that there exist at least two distinct modes of cortical
response to stimuli. In mode 1 a low intensity stimulus triggers a wave that propagates at a velocity of about 0.3
m/sec, with an amplitude that decays exponentially. In mode 2 a high intensity stimulus triggers a larger response
that remains local, and does not propagate to neighboring regions. Other data indicate that unstimulated or
resting cortex exhibits pair correlations between neighboring cells, the amplitudes of which decay slowly with
distance, whereas stimulated cortex exhibits pair correlations whose amplitude falls of rapidly with distance.
Here we show how the mean-field Wilson-Cowan equations can account precisely for the two modes of cortical
response, and how stochastic Wilson-Cowan equations can account for the behavior of the pair correlations. We
will present these results after outlining the basic properties of both the mean-field and stochastic equations.
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Gustavo Deco
Center for Brain and Cognition,
Universitat Pompeu Fabra / ICREA, Barcelona, Spain

K3 — The Dynamics of Resting Fluctuations in the Brain

The grand average functional connectivity (FC) of a resting brain captures properly the well-structured spatial
correlations between different brain areas. Whole-brain-models explicitly linking spontaneous local neuronal dy-
namics with the tractography based anatomical structure of the brain are able to explain the emergence of those
spatial resting correlations. Nevertheless, resting activity is not only spatially structured but also shows a very
stereotypical temporal structure which is characterized by rapid transitions switching between a few discrete FC
states across time. In this talk, we introduce a powerful theoretical framework, which allows us to demonstrate
that resting functional connectivity FC dynamics (FCD) constrains more strongly the dynamical working point of
whole-brain models. Furthermore, using a very general neural mass model based on the normal form of a Hopf
bifurcation we are able to demonstrate that the temporal dynamics of resting state fluctuations emerges at the
edge of the transition between asynchronous to oscillatory behavior. Even more importantly, at that particular
working point the global metastability of the whole brain is maximized. By optimizing the spectral characteristics
of each local brain node, we discover the dynamical core of the brain, i.e., the set of nodes, which drives by
oscillations the rest of the whole brain.

Wulfram Gerstner
Laboratory of Computational Neuroscience,
Brain Mind Institute, Lausanne EPFL, Switzerland

K4 — From single neurons to populations: Modeling neuronal dynamics across different
scales

Can we replace a standard leaky integrate-and-fire model by something that is at the same level of complexity,
but well-grounded on experimental data? Can we replace standard Wilson-Cowan type rate equations (or field
equations) by other equations that are at the same level of complexity, but directly derivable from models of single
neurons? In this talk, | will present a processing chain from experimental somatic single-electrode recordings to
generalized integrate-and-fire models and from these to population rate equations. The parameters of the neuron
models are directly extracted from experimental data, using ideas from Generalized Linear Models. Groups of
similar neurons are arranged in populations with random connectivity. The population equations are derived
using mean-field methods and can be interpreted as a generalized renewal process with adaptation and finite-
size fluctuations.
[1] C. Pozzorini, R. Naud, S. Mensi, and W. Gerstner (2013), Nature Neuroscience 16:942 - 948.

[2] C. Pozzorini, S. Mensi et al. (2015), PLoS Computational Biology, to appear.
[3] R. Naud and W. Gerstner, PLoS Computational Biology, Vol. 8, Nr. 10, pp. €1002711, 2012.
[4] M. Deger, T. Schwalger, R. Naud and W. Gerstner, Physical Review E, Vol. 90, Nr. 6, pp. 062704, 2014.
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Contributed Talks

F1 Complex synapses as efficient memory systems
Marcus K Benna*, Stefano Fusi

Center for Theoretical Neuroscience, Columbia University, College of Physicians and Surgeons, New York, NY
10032, USA

The molecular machinery underlying memory consolidation at the level of synaptic connections is believed to
employ a complex network of highly diverse biochemical processes that operate on a wide range of different
timescales. An appropriate theoretical framework could help us identify their computational roles and understand
how these intricate networks of interactions support synaptic memory formation and maintenance.

Here we construct a broad class of synaptic models that can efficiently harness biological complexity to store
and preserve a huge number of memories, vastly outperforming other synaptic models of memory. The num-
ber of storable memories grows almost linearly with the number of synapses, which constitutes a substantial
improvement over the square root scaling of previous models [1,2], especially when large neural systems are
considered. This improvement is obtained without significantly reducing the initial memory strength, which still
scales approximately like the square root of the number of synapses.

This is achieved by combining together multiple dynamical processes that operate on different timescales, to
ensure the memory strength decays as slowly as the inverse square root of the age of the corresponding synaptic
modification. Memories are initially stored in fast variables and then progressively transferred to slower ones.
Importantly, in our case the interactions between fast and slow variables are bidirectional, in contrast to the
unidirectional cascades of previous models.

The proposed models are robust to perturbations of parameters and can capture several properties of biological
memories, which include delayed expression of synaptic potentiation and depression, synaptic metaplasticity,
and spacing effects. We discuss predictions for the autocorrelation function of the synaptic efficacy that can be
tested in plasticity experiments involving long sequences of synaptic modifications.
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Deep brain stimulation (DBS) is used to treat motor symptoms of patients with Parkinson’s disease (PD). How-
ever, tuning stimulation parameters is currently done using a time intensive trial-and-error process until maximum
therapy is achieved with minimal side effects [1]. There is a need for a systematic approach to tuning parameters
based on patient physiology. With the development of DBS electrodes that can simultaneously stimulate and
record [2], a closed-loop approach may be taken. It is hypothesized that emergent oscillations in the basal gan-
glia network, particularly in the beta range (12-35 Hz) lead to motor symptoms of PD [3], and that DBS works by
disrupting these oscillations. Our hypothesis is that stimulating at a specific phase in the pathological oscillation
will optimally disrupt the oscillatory activity, and that this phase can be predicted from the phase response curve
(PRC). Here, we use a computational network model of PD with an emergent pathological 34 Hz oscillation [5]
to test this closed-loop approach to DBS and confirm the results in vitro. By stimulating at a specific phase in the
beta oscillation we are able to modulate the power of the oscillation in the model. By stimulating soon after the
peak in the oscillation, we disrupt the 34 Hz oscillation, while stimulating later in the period enhances it. Hence,
the timing of stimulation affects how well the population of neurons desynchronized. Next, we test this concept
in vitro by synchronizing patch-clamped neurons in the substantia nigra pars reticulata (an output nucleus of
the basal ganglia) to an oscillatory input, such as a beta oscillation. We show that stimulating at a particular
phase of the oscillatory input affects how well neurons synchronize or desynchronize to that input. Finally, we
show it is possible to use the PRC to predict how stimulating at a specific phase will affect the neuron’s ability to
synchronize or desynchronize from the oscillatory input in vitro.

This work shows that stimulating at specific phases in an oscillation can synchronize or desynchronize neurons
in a computational model and in vitro. By stimulating at specific phases of an emergent pathological oscillation in
a closed-loop approach to DBS, we were able to suppress a pathological oscillation in a computational model of
PD. In this approach, a frequency of 34 Hz was used for DBS, which is much lower than the value used clinically
(>100 Hz). Through closed-loop stimulation, precisely timed stimuli with respect to the phase of the oscillation
can dramatically decrease stimulus power needed for DBS. The ability to synchronize or desynchronize a neuron
to an oscillatory input by stimulating at a certain phase was also validated in vitro. It is possible to predict
the phase of stimulation to maximally disrupt neuronal synchronization to an external oscillatory input in single
neurons using a PRC. We have previously shown a novel method to estimate a PRC from population data [4] in
a computational model of PD. This suggests it may be possible to predict the phase at which to stimulate in order
to optimally disrupt a pathological population oscillation in PD using the PRC, and apply this in a closed-loop
approach to DBS.

Acknowledgements
Research supported by MnDrive Neuromodulation Fellowship, NSF Collaborative Research Grant, and Neuro-
engineering NSF IGERT under DGE-1069104

References

[1] Volkmann J, Herzog J, Kopper F, Deuschl G: Introduction to the programming of deep brain stimulators.
Movement disorders : official journal of the Movement Disorder Society 2002, 17 Suppl 3:5181-187.

[2] Ryapolova-Webb E, Afshar P, Stanslaski S, Denison T, de Hemptinne C, Bankiewicz K, Starr PA: Chronic
cortical and electromyographic recordings from a fully implantable device: preclinical experience in a
nonhuman primate. J Neural Eng 2014, 11(1):016009.

. [3] Dostrovsky J, Bergman H: Oscillatory activity in the basal ganglia—relationship to normal physiology
and pathophysiology. Brain : a journal of neurology 2004, 127(Pt 4):721-722.

[4] Holt AB, Netoff TI: Origins and suppression of oscillations in a computational model of Parkinson’s
disease. J Comput Neurosci 2014, 37(3):505-521.

[5] Hahn PJ, McIntyre CC: Modeling shifts in the rate and pattern of subthalamopallidal network activity
during deep brain stimulation. Journal of computational neuroscience 2010, 28(3):425-441.

44



F3 Control of gamma vs beta competition in olfactory bulb by the balance between sensory input
and centrifugal feedback control

Francois David®, Emmanuelle Courtiol'?, Nathalie Buonviso!, and Nicolas Fourcaud-Trocme!*

'Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard, Lyon,
France

2Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research and the Department of Child and Ado-
lescent Psychiatry New York University Langone Medical Center

Gamma (40-80Hz) and beta (15-40Hz) oscillations and their associated neuronal assemblies are key features
of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch
between these different regimes in most sensory systems remain misunderstood. The mammalian olfactory bulb
(OB) expresses both gamma and beta oscillations, which appear to be mutually exclusive, and a slower one
related to the respiration (2-10Hz). Gamma oscillations have been linked to odorant physical properties (quality,
intensity) while beta oscillations are strongly increased by odor experience (for reviews see [1, 2]). Importantly,
the occurrence pattern of these two fast alternating oscillations is intermingled with the respiratory slow rhythm
which provides a window for odor discrimination. Based on in vivo recordings and biophysical modeling of the
mammalian olfactory bulb (OB), we explored how OB internal dynamics and the balance between sensory and
centrifugal inputs control the occurrence and alternation of OB gamma and beta oscillations over a respiratory
cycle.

In the OB, fast oscillations originate in the dendrodendritic interaction between excitatory mitral cells (MCs) and
inhibitory granule cells (GCs). Experimental evidence have shown that GC dendritic arbor can operate in two
modes: a local mode which effectively allows a weak inhibition between MCs without requiring GC spikes, and a
global mode which induces a strong inhibition of MCs following GC spikes. We implemented these two inhibitory
mechanisms in a parsimonious and flexible OB model based on generalized integrate-and-fire models. In granule
non-spiking regime, the weak inhibition can sustain OB oscillation in the gamma frequency range with charac-
teristics of an auto-entrainment process [3]. In contrast, in the granular spiking regime, MCs sufficiently excite
the GCs such that the latter discharge and induce a strong inhibitory input which silences the MC population
and generate beta oscillations, similarly to the PING regime [4]. Intrinsic properties of each type of oscillation are
remarkably stable regarding most of tested network parameters. However their occurrence depends strongly on
OB network sensory and centrifugal inputs (onto MCs and GCs respectively). In particular, sensory activation of
MCs must be strong enough for the emergence of gamma oscillations, while sufficient centrifugal activation of
GCs, to allow them to spike, is necessary to generate beta. Based on novel experimental data in anesthetized
rat, we show that both inputs are slowly modulated by the respiratory rhythm but phase shifted by about a quarter
cycle. In our model, this phase shift can account for the gamma-beta alternation observed in vivo. Finally, addi-
tional tests show that the model captures accurately the competition between gamma and beta oscillations when
sensory or centrifugal inputs are modulated such as in different natural conditions involving odor characteristics
(odor intensity) and behavior (odor experience, active sniffing). Overall the model approaches very closely OB
dynamics observed in vivo, and can thus be used to interpret present and future experiments.
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The size of the mammalian brain is inconveniently right in the middle between a few interacting particles and
a mole of matter on a logarithmic scale. In physics, we learn that often in the limit where system size goes to
infinity simple mathematical expressions can be obtained uncovering the mechanisms governing the dynamics
at the large but finite system size in nature. In neuroscience, however, we found that such an ansatz may fail
because correlations drop so slowly that the mechanism governing the behavior in the infinite size limit [1] is
not the mechanism relevant at the scale of the brain circuit in question [2]. The direct simulation of networks at
their natural size has historically been difficult due to the sheer number of neurons and synapses. Therefore,
neuroscientists also routinely explore the other side of the logarithmic scale and investigate downscaled circuits.
In summary, it seems that brain networks are often too small for the infinity limit and too large for simulations.

In this contribution, we assess the scalability of networks in the asynchronous irregular state with a focus on
downscaling. By extending the theory of correlations in such networks [2,3,4,5] and verifying analytical pre-
dictions by direct simulations using NEST [6], we formally demonstrate that generally already second-order
measures cannot be preserved. The underlying mathematical reason is a one-to-one mapping between corre-
lation structure and effective connectivity, which depends both on the physical connectivity and on the working
point of the neurons [7]. Correlations are relevant because they influence synaptic plasticity [8] and large-scale
measurements of neuronal activity [9], and are related to information processing and behavior [10,11].

Our results show that the reducibility of asynchronous networks is fundamentally limited, indicating the impor-
tance of considering networks with realistic numbers of neurons and synapses. Fortunately, corresponding sim-
ulation technology is becoming available to neuroscience [12]. Both the investigation of the infinity limit and
the exploration of downscaled networks remain powerful methods of computational neuroscience. However, re-
searchers should make explicit the rationale they apply in up- or downscaling.
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The apparent stochasticity of in-vivo neural circuits has long been hypothesized to represent a signature of
ongoing stochastic inference in the brain [1, 2, 3]. More recently, a theoretical framework for neural sampling has
been proposed, which explains how sample-based inference can be performed by networks of spiking neurons
[4, 5]. One particular requirement of this approach is that the membrane potential of these neurons satisfies the
so-called neural computability condition (NCC), which in turn leads to a logistic neural response function.

Analytical approaches to calculating this function have been the subject of many theoretical studies. In order
to make the problem tractable, particular assumptions regarding the neural or synaptic parameters are usually
made [6,7]. However, biologically significant activity regimes exist which are not covered by these approaches:
Under strong synaptic bombardment, as is often the case in cortex, the neuron is shifted into a high-conductance
state (HCS), which is characterized by a small membrane time constant. In this regime, synaptic time constants
and refractory periods dominate membrane dynamics.

The HCS is also particularly interesting from a functional point of view. In [5], we have shown that LIF neurons
that are shifted into a HCS by background synaptic bombardment can attain the correct firing statistics to sample
from well-defined probability distributions (i.e., satisfy the NCC). In order to calculate the response function of
neurons in this regime, we are required to consider a new approach.

The core idea of this approach is to separately consider two different “modes” of spiking dynamics: burst spiking
and transient quiescence, in which the neuron does not spike for longer periods. For the bursting mode, we
explicitly take into consideration the autocorrelation of the membrane potential before and after refractoriness
by propagating the PDF of the effective membrane potential from spike to spike within a burst. For the mem-
brane potential evolution between bursts, we consider an Ornstein-Uhlenbeck approximation. We find that our
theoretical prediction of the neural response function closely matches simulation data. Moreover, in the HCS
scenario, we show that the neural response function becomes symmetric and can be well approximated by a
logistic function, thereby providing the correct dynamics in order to perform neural sampling. Such stochastic
firing units can then be used to sample from arbitrary probability distributions over binary random variables [4,
5, 8, 9]. We hereby provide not only a normative framework for Bayesian inference in cortex, but also powerful
applications of low-power, accelerated neuromorphic systems to highly relevant machine learning problems.
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Neuronal systems have been proposed to operate close to criticality. But how far from criticality are they pre-
cisely? We developed a novel method to determine the distance to criticality from data. Importantly, our method
is reliable under subsampling, i.e. the experimental constraint that in many dynamical systems only a small frac-
tion of all agents can be sampled. Thereby, our novel approach for the first time allows to determine the distance
to criticality without bias from spiking activity in vivo, which in general is strongly subsampled.

In more detail, neuronal systems have been proposed to operate close to criticality, as power-law distributions of
the avalanche size have been found for local field potentials from in vitro preparations [1], to human cortex [2].
Criticality is an attractive candidate state for neural dynamics, because in models criticality maximizes processing
capacities [3]. However, it has been widely overlooked that criticality also comes with the risk of spontaneous
runaway activity (epilepsy). Recent experiments suggest that spiking activity in rats, cats, and monkeys, is in
a sub-critical regime, keeping a safety-margin from criticality [4]. Quantifying the precise distance to criticality
may help to shed light on how the brain maximizes its information processing capacities without risking runaway
activity.

In neural systems, critical dynamics is usually studied in the context of branching processes with continuous drive
[1], because they approximate well the functional propagation of spiking activity on the network [4]. The dynamics
of branching processes are determined by the expected number of spikes ¢ in postsynaptic neurons triggered by
a single spike, showing either stationary dynamics (sub-critical, o < 1) or transient growth (super-critical, o > 1);
for 0 = 1 branching processes are critical and generate the characteristic power law scaling. Methods to infer o
from fully sampled systems are well established, however, subsampling [5] resulted in strongly biased estimates
(Fig., empty symbols). To overcome this bias, we derived a novel measure, based on a multistep linear regres-
sion. This measure for the first time allows to quantify the distance to criticality even under strong subsampling
(Fig., full symbols). Our method generalizes to auto-regressive processes with both additive and multiplicative
noise, making it widely applicable. We validated our method by applying subsampling to simulated branching
processes with invasion, and to a generic integrate-and-fire model. After validation, we applied this method to
highly parallel spike recordings from macaque prefrontal cortex, cat visual cortex, and rat hippocampus. These
analysis indicated that spiking activity is clearly subcritical (0.97 < o < 0.99; N = 10 experiments), and not
critical.
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Figure 1: Estimated branching ratio ¢ in dependence of sampled units n of a system of size N, for conventional
(empty symbols) and our novel (full) measures in theory and models and in spike recordings.
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Brains achieve efficient function through implementing a division of labor, in which different neurons serve distinct
computational roles. One striking way in which neuron types differ is in their electrophysiology properties. These
properties arise through expression of combinations of ion channels that collectively define the computations
that a neuron performs on its inputs and its role within its larger circuit. Though the electrophysiology of many
neuron types has been previously characterized, these data exist across thousands of journal articles, making
cross study neuron-to-neuron comparisons difficult.

Here, we present NeuroElectro, a public database where physiological properties for the majority of mammalian
neuron types have been compiled through semi-automated literature text-mining and expert curation. The cor-
responding web application, at neuroelectro.org, provides a rich dynamic interface for visualizing and comparing
physiological information across neuron types; conveniently linking extracted data back to its primary reference.
Mining the database content after normalization for methodological differences, we show that there exist but 5-9
major neuron classes in terms of electrophysiological properties, which separate largely based on cell size and
basal levels of excitability (Figure 1).

As an example of how this resource can help answer fundamental questions in neuroscience, we integrate Neu-
roElectro with neuronal gene expression from public datasets like the Allen Brain Atlas. We show that simple
statistical models can accurately predict features of a neuron’s electrophysiological phenotype given information
of its gene expression alone. We further investigate these models to ask which genes, of the 20K in the genome,
are most predictive of neuron physiology. We find that while ion channel-related genes provide significant pre-
dictive power, the most predictive gene classes surprisingly correspond to G-proteins and transcription factors,
suggesting the involvement of hundreds of diverse genes in regulating a neuron’s computational function.
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Figure 1: Hierarchical clustering of diverse neuron types on the basis of electrophysiological similarity. Electro-
physiological parameters are obtained from the NeuroElectro database via literature-mining and are normalized
to account for variability in experimental methodologies across studies.
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The ability to perform complex motor control tasks is essentially enabled by the nervous system via the self-
organization of large groups of neurons into coherent dynamic activity patterns. During learning, this is brought
about by synaptic plasticity, resulting in the formation of multiple functional networks — commonly termed as ‘cell-
assemblies’. A multitude of such cell assemblies provide the requisite machinery for non-linear computations
needed for the mastery of a large number of motor skills. However, given the fact that there exists considerable
overlap between the usage of the same neurons within such assemblies, for a wide range of motor tasks, creation
and sustenance of such computationally powerful networks posses a challenging problem. How such interwo-
ven assembly networks self-organize and how powerful assemblies can coexist therein, without catastrophically
interfering with each other remains largely unknown. One the one side, it is already known that networks can
be trained to perform complex nonlinear calculations [1], such that, if the network possesses a reservoir of
rich, transient dynamics, desired outputs can be extracted from these reservoirs in order to enable motor con-
trol. On the other side, cell assemblies are created by Hebbian learning rules that strengthen a synapse if pre-
and post-synaptic neurons are co-active within a small enough time window [2]. Therefore it appears relatively
straightforward to combine these mechanisms in order to construct powerful assembly networks. However, given
that the self-organization of neurons into cell assemblies by the processes of synaptic plasticity induces ordered
or synchronized neuronal dynamics, which can destroy the required complexity of a reservoir network, such
a combination remains a very challenging problem [3]. Furthermore, simultaneous creation of multiple cell as-
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semblies can also lead to catastrophic interference if one cannot prevent them from growing into each other.
In this study, we exploit for the first time the interaction between neuronal and synaptic processes acting on
different time scales to enable, on a long time scale, the self-organized formation of assembly networks (Fig. 1),
while on a shorter timescale, to conjointly perform several non-linear calculations needed for motor fine-control.
Specifically, by the combination of synaptic plasticity and synaptic scaling [4], as a homeostatic mechanism,
we demonstrate that such self-organization allows executing a difficult, six degrees of freedom, manipulation
task with a robot where assemblies need to learn computing complex nonlinear transforms and - for execution -
must cooperate with each other without interference. This mechanism, thus, permits for the first time, the guided
self-organization of computationally powerful sub-structures in dynamic networks for behavior control. Further-
more, comparing our assembly network to networks with unchanging synapses ("static” networks) shows that it
is indeed the embedding of a strongly connected assembly that creates the necessary computational power.
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Figure 1: Cell assembly size and computational performance are correlated. (A) Input-driven formation of
cell assemblies brought about by the interaction long-term potentiation (LTP) and synaptic scaling (Syn. Sca.).
(B) With more learning trials the assembly grows and integrates more neurons. We measure this by arbitrarily
defining assembly size by that set of neurons connected with efficacies larger than half the maximum weights.
(C) Parallel to the outgrowth of the cell assembly the error of the system to perform several linear and non-linear
calculations decreases.
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Neurons in the hippocampal formation exhibit a variety of spatially tuned firing patterns. The mechanisms by
which these different patterns emerge are not fully resolved, although competing computational models exist for
several of them. Here we present a new model thatcan generate all observed spatial firing patterns by a single
mechanism. The model consists of a feedforward network with a single output neuron. Its essential ingredients
are i) spatially tuned excitatory and inhibitory inputs [e.g., 1] and ii) interacting excitatory and inhibitory Hebbian
plasticity. The inhibitory plasticity homeostatically controls the output firing rate by balancing excitation and in-
hibition [2]. We show in simulations and by a mathematical analysis that the output neuron develops periodic
firing patterns along a stimulus dimension if inhibitory inputs are more broadly tuned than excitatory inputs along
this dimension. More generally, depending on the relative spatial auto-correlation length of the excitatory and in-
hibitory inputs, the model exhibits firing patterns that are similar to those of place cells, grid cells (see Figure 1) or
band cells (neurons that fire on spatially periodic bands [3]). For inputs with combined spatial and head direction
tuning, the same mechanism leads to output firing patterns reminiscent of head direction cells and conjunctive
cells (neurons that fire like grid cells in space but only at a particular head direction). A linear stability analysis of
the homogeneous steady state accurately predicts the spatial periodicity obtained from simulations. The model
combines the robust pattern formation of attractor models [e.g., 4], with the spatial (rather than neural) structure
formation of models based on synaptic plasticity [5]. In contrast to attractor models [6], our model predicts that
the grid spacing should be robust to global modifications in inhibitory synaptic strength, a distinction which could
be experimentally verified.

In conclusion, we propose a feedforward network model that generates all known spatial firing patterns in the
hippocampal formation through a single self-organizing mechanism.
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Figure 1: Example for the emergence of a grid cell. Columns from left to right: Spatial tuning of excitatory and
inhibitory inputs (two examples each); spatial activity pattern of the output neuron before and after learning;
auto-correlogram of activity after learning.
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We addressed the principles of micro-level organization of neuronal circuits and explored how the neuronal
morphology constrains this organization. Several studies have demonstrated the non-trivial properties of the
network connectivity using in vitro recordings from multiple neurons [1], [2], [3], yet it is unclear to what extent
this structure reflects reorganization caused by synaptic plasticity, and what is imposed by the morphological
constraints. Two recent articles explored this issue using the simulated neural circuits and demonstrated the
specific structural properties in those circuits [4], [5].

We analyzed a model that emphasizes the role of single-cell morphology, a homogeneous population of neurons
in a planar space without boundaries. Each neuron is composed of two displaced neurite fields defined on
the limited support. A neurite field describes the likelihood of finding a neurite segment at a certain point in
the plane. Using a proximity criterion (Peters’ rule) the expected number of potential synapses is estimated
between each pair of neurons. Alternatively, this number can be estimated from the realistic morphology of a
simulated neuron, or from the morphologies reconstructed from in vitro/in vivo recordngs. The number of potential
synapses depends on the axon-dendrite distance, which leads to a deffinition of the expected radius. An axon-
dendrite pair that is expected to form at least one synapse must be on a distance not larger than the effective
radius. All considered statistical measures of network connectivity are expressed as the functions of the effective
radius normalized with the neuron size. In this study, we considered the standard graph theoretic measures of
network connectivity, the motif counts, clustering coefficient, path length, and small-world coefficient. It has been
demonstrated that they have a significant impact on the population activity in simulated networks [6].

Changing the normalized effective radius from small (0.3) to big (10) we vary the network properties between
the two extremes. For the small values of the effective radius, the networks favor unidirectional connections and
sparse local connectivity. The clustering coefficient and the path length are similar to those obtained in uniform
random networks, i.e. in the networks independent of topology. For the large values of the effective radius,
the local connectivity is dense with the majority of bidirectional connections. As the normalized effective radius
increases, the clustering coefficient increases towards the values obtained for the networks with dominant local
connectivity, while the path length remains close to the one of the uniform random networks. The normalized
effective radius on the interval 1-2, provides the biggest variability of connectivity patterns and the optimized
properties relevant for the information transfer.

Conclusions: We present a theoretical framework that relates heuromorphology with the connectivity in neu-
ronal circuits, and that can be solved analytically. The normalized effective radius was found to be the key
morphological property that dominantly affects considered connectivity measures. By tuning it we can obtain the
networks with the biggest variability of local connectivity patterns. At the same time, those networks aquire the
key characteristics of the small-world networks, known to optimize the information transfer.
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The Hodgkin and Huxley (1952) model of action potential (AP) generation accounts for many properties of APs
observed experimentally and has been successfully used in modeling neurons of different types. In this model,
however, the spike onset is much shallower than in experimental recordings from the soma suggesting different
activation properties of sodium channels in the real tissue. To explain the origin of the observed sharpness (kink)
in the spike onset three hypotheses were proposed: 1. Cooperative hypothesis: sodium channels cooperate in
the axon initial segment, which makes their collective activation curve much sharper [2]. However, there is no
experimental evidence for this hypothesis. 2. Active backpropagation hypothesis: spikes are initiated in the axon
and backpropagate to the soma. The kink is caused by the sharpening of the axonal spike by active conductances
during its backpropagation through the axon [3]. 3. Compartmentalization hypothesis: the kink comes from distal
initiation and the current sink caused by the difference in the size of the soma and axon [1].

To find out what is truly happening in the cell during the action potential, we investigated the active backpropa-
gation and compartmentalization hypotheses by means of computational modeling and theoretical analysis. In
order to differentiate the hypotheses, we varied systematically the morphology of the neuron and distribution of
the ionic channels along the cell, and tested how they contribute to the appearance of the kink. We show that the
kink at spike onset is primarily due to compartmentalization rather than to active backpropagation.
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Figure 1: Kink in the action potential. Patch clamp recordings (red) from a cortical pyramidal cell and action
potential produced by a Hodgkin Huxley type model (black). Left: Voltage-time relationship. Right: Phase plot of
the same traces as in the left (dV/dt vs. V). Note, in both representations the onset of the action potential is much
faster for the experimental recordings (red) than for the model (black).
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Visual processing depends on computations performed by complex neural circuits. Although the circuitry in
the retina has been extensively characterized, common “functional” models of how ganglion cell spike trains
represent visual stimuli typically rely on linear descriptions of their receptive field [1]. Different types of nonlinear
models have offered improvements in spike train prediction, but such improvements are often incremental, and
in most cases not linked to known elements of the retinal circuit.

Here, we describe a new nonlinear model framework designed to represent key elements of the retinal circuit,
which can predict recorded retinal ganglion cell spike trains with high temporal precision. We used recordings
of both synaptic currents (via voltage-clamp recordings) and spike (via loose patch recordings) from the same
ON Alpha ganglion cells in the mouse retina in order to build a two-stage nonlinear model. This model describes
ganglion cell computation as sums and products of excitatory and inhibitory inputs [2]. Model parameters were
estimated based on either intracellular or spike train data using a maximum-likelihood framework.

We found that excitatory synaptic currents to the ganglion cell are well described by an excitatory input combined
with divisive suppression, both elements described by LN models fit to intracellular data. Using stimuli with center-
surround structure, we demonstrate that this divisive suppression arises from the surround, and is the likely result
of presynaptic inhibition mediated by amacrine cells [3], rather than synaptic depression [4]. We then extended
this nonlinear model of synaptic currents to explain spike response of the ganglion cell by incorporating a spiking
nonlinearity with spike refractoriness. All model parameters could be fit using the spike trains alone, resulting in
a prediction of the excitatory currents that closely matched the models fit directly to the currents.

The resulting model had unprecedented ability to predict both synaptic current and spike trains (with 90% of
the explainable variance) at one millisecond resolution on cross-validation datasets, capturing both fast transient
responses in synaptic current, as well as the high precision of spike train responses. Furthermore, the model
output automatically “adapted” to contrast, and could predict the responses across contrast levels with similar
accuracy without any change in model parameters. Notably, the nonlinear structure of the model was particular
to ON Alpha ganglion cells, and other retinal ganglion cell types had distinct computational structures, likely
corresponding to different underlying connectivity within the retina governing their processing of vision.

Thus, by targeting a nonlinear model based on the specific computations performed by retinal circuit elements,
we uncovered an extremely accurate description of retinal processing, and identified two-stage computational
properties that can be linked to elements of the retinal circuit. In addition to providing an accurate description of
ON Alpha cells, such computational framework also sets a foundation for understanding the different roles of the
20 ganglion cell types that comprise the input to the rest of the visual system.
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In our empirical data comprising of single-unit and LFP recordings in macaque area V1 and source reconstructed
human MEG localized to visual cortex we have observed a robust increase in gamma oscillation frequency with
increasing luminance contrast. In addition, at high grating contrasts, a robust decay in gamma power was ob-
served in the LFP [1] but not the MEG. These phenomena are key to understanding the functional role of network
frequencies and for investigating the stability of gamma oscillations at both local and macroscopic levels. How-
ever, even at the most basic level of spatially- undifferentiated neuronal models, it is not fully understood how
excitatory (E) and inhibitory (I) neurons interact to generate the observed network gamma oscillations in the
macaque single-unit and LFP data. For example we could obtain the frequency shift and power decay in a net-
work where the rhythm is produced by excitatory neurons that fired more frequently than inhibitory neurons, and
in another more neurophysiologically plausible network composed of excitatory neurons showing sparse firing
[2, 3] and inhibitory neurons showing faster firing [4]. Moreover, it is unknown how increasing excitatory afferent
drive (of which luminance contrast is a proxy) modulates the interactions between E and | populations (as well
as interactions within each population) to account for changes in frequency and power. We aimed to replicate
the empirical data from macaque visual cortex and to further investigate the stability of the observed gamma
oscillation. Here, we present an undifferentiated V1 network PING model, with realistic neuronal features as de-
termined and validated from the analysis of a large number of V1 neurons obtained in 3 rhesus monkeys. The
model when perturbed by increasing afferent input, exhibits the core characteristics of the empirical data, that
is, (1) a monotonic increase in LFP frequency, (2) a non-monotonic LFP power modulation with decay at high
inputs, (3) a largely non-saturating increase in average unit firing rate. In addition, the model exhibits realistic
single unit behavior across a range of inputs. In terms of the frequency shift, we have observed remarkable scal-
ing behaviour: while the frequency of oscillations changes dramatically with input, the absolute average phase
at which inhibitory and excitatory neurons fire in each oscillation cycle and the average relative phase to each
other remain constant. This scaling may on one hand underlie the stability of the gamma oscillation locally and
on other hand facilitate communication through coherence in the gamma range [5] across varying stimulus con-
ditions, by preserving the timing and relative ordering of population firing irrespective of the oscillation frequency
[6]. Our results suggest that the observed power decline results from a primary (functional) decoupling among
inhibitory neurons. Further analysis highlighted that the functional decoupling is related to the balance of inhibi-
tion/excitation. In further steps, we intend to test these predictions in the empirical data, and then proceed to a
differentiated V1 columnar model to investigate the divergences between human MEG and macaque LFP/spiking
responses.
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We demonstrate how an abstract mathematical model that approximates a wide range of more detailed models
can be used to make predictions about hearing loss-related changes in neural behaviour.

One consequence of neurosensory hearing loss (noise-induced and aging-related) is a reduced ability to under-
stand speech, particularly in noisy environments, and sometimes beyond what would be predicted from reduced
audibility. Indeed, this type of speech deficit can occur in listeners with near-normal hearing thresholds [1]. A
promising avenue of investigation to explain this comes from experimental results in mice showing that there can
be a permanent loss of auditory nerve fibres (ANFs) following “temporary” noise-induced hearing loss (i.e. when
thresholds return to normal after a few weeks) [2]. The downstream consequences of this loss of fibres has not
yet been systematically investigated (although see [3]). We predict, using a theoretical analysis that applies to a
wide range of neural models, that the regularity of the spike trains of many neurons in the cochlear nucleus (the
next structure after the auditory nerve) will decrease following a reduction in the number of input cells.

We present a mathematical analysis of the stationary behaviour of “chopper” cells in the ventral cochlear nucleus,
approximating them by a stochastic process that is entirely characterised by its mean, standard deviation and
time constants. Furthermore, these constants can be straightforwardly related to physiologically significant pa-
rameters including the number of inputs and their average firing rates. From this approximation, we can compute
the regularity of the chopper cell spike trains measured as the coefficient of variation of their interspike intervals
(CV).

One simple prediction of this model is that when the intensity of a stimulus changes, leading to a change in the
average firing rate of the ANF inputs, there will be a corresponding change in the regularity of the chopper cell
spike train. This prediction poses problems for the widely used scheme for classifying chopper cells as sustained
or transient based on their ongoing CVs as it implies that the classification could be level-dependent. We present
a re-analysis of an existing experimental data set that demonstrates that ongoing CV is indeed level-dependent
in the majority of chopper cells, and that in some cells this leads to a level-dependence in their classification.

Assuming a homeostatic regulation of long term firing rates, a loss of ANFs will lead to an increase in the standard
deviation of the stochastic process and a consequent increase in the CV of the chopper cell. Some choppers
that were previously classified as sustained will become transient, a substantial change in their behaviour that is
highly likely to disrupt auditory processing. While the function of chopper cells is still debated, one suggested role
is in the coding of temporal envelope [4], which is widely agreed to be essential for understanding speech. Loss
of ANFs could therefore lead to a disruption of the processing of temporal envelope, and consequently degrade
speech intelligibility. We briefly conclude by discussing the challenges of testing this hypothesis experimentally.
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Dyslexics are diagnosed for their poor reading skills. Yet, they characteristically also suffer from poor verbal mem-
ory, and often from poor auditory skills. We now hypothesize that Dyslexia can be understood computationally as
a deficit in integrating prior information with noisy observations. To test this hypothesis we analyzed performance
in two tones pitch discrimination task using a two-parameter computational model. One parameter captures the
internal noise in representing the current event and the other captures the impact of recently acquired prior infor-
mation [1]. We found that Dyslexics’ perceptual deficit can be accounted for by inadequate adjustment of these
components: low weighting of their implicit memory in relation to their internal noise (Figure 1). Using ERP mea-
surements we found evidence for Dyslexics’ deficient automatic integration of experiment's statistics (Figure 2).
Taken together, these results suggest that Dyslexia can be understood as a well-defined computational deficit.
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Figure 1: Estimated parameters of the Implicit Memory Model. Estimated values of n (weighting of implicit mem-
ory) as a function of estimated values of o (percentage of internal noise) of Controls (blue) and Dyslexics (red).
The optimal weighting 7" is plotted in green. Gray area depicts the confidence interval of 2.5% below the best
performance. Inset. Median deviation from optimal weighting of previous trials. Dyslexics’ deviation is larger than
Controls’ (Mann-Whitney test, Z = 2.5, P < 0.01). Error bars denote inter-quartile range.
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Figure 2: Grand Average ERPs to the two-tone stimulation. A. Controls B. Dyslexics. Trials are sorted according
to the trial type, Bias+ (where the impact of previous trials improves performance) and Bias- (where the impact of
previous trials impairs performance). Controls’ P2 after the first tone differs between the two trial types. Dyslexics’
evoked responses did not differ between the two trial types. Filled areas denote cross-subject SEM. Small black
rectangles under the plots denote the temporal location of the two tones in the trial. Middle insets. P2 region
enlarged; Top right insets. Single subject P2 area in Bias- versus Bias+ trials. The difference between the trial
types is significantly larger among Controls than among Dyslexics (Condition X Group interaction: Mann-Whitney
test, z = 2.5, P 0.05).
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Transcranial direct current stimulation (tDCS) leads to positive effects in neurological and psychiatric diseases,
such as depression, pain, or stroke, which outlast the treatment itself. Although numerous influencing stimulation
parameters and factors are known, the mechanisms behind tDCS remain unclear. To reveal the mechanisms
tDCS started to be considered to affect networks while (de)polarizing parts of the brain. We study here the ability
of tDCS as a tool to bias functional networks by affecting the connections given the brain structure.

We used structural data, that is, a human connectome to construct a large-scale brain network model of 74
cerebral areas, each described by a Jansen and Rit model. The model was designed on the basis of the neuroin-
formatics platform The Virtual Brain to account for reproducibility of the simulations. The tDCS-induced currents
on the cerebral areas were calculated using a finite element method model. Based on the dynamical repertoire
of an isolated area [1], we analyzed the brain activity, that is, the spatiotemporal dynamics in terms of rhythms
and baseline potentials during rest, during tDCS, and the change between both.

We identified the network states during rest and catalogued all states for further modeling studies. During tDCS,
increased functional connectivity was found among a set of scalp EEG sensors, as reported in measurements
[2], as well as among cerebral cortical areas (see Figure 1). Furthermore, tDCS led to sharpened frequency
spectra and increased (anode) or decreased (cathode) power in the respective areas.

This study supports the notion that noninvasive brain stimulation is able to bias brain dynamics by affecting
the competitive interplay of functional subnetworks. Our work constitutes a basis for further modeling studies to
test target-oriented manipulation of functional networks (e.g. through adapted electrode montages) to improve
pertinent treatment conditions. Furthermore, our approach emphasizes the role of structural data such as the
network topology in emerging dynamics. Dynamics cannot necessarily be predicted from the structure but we
found the structure especially important at transitions of network states.
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Figure 1. New functional connections are established during tDCS: among cortical areas, Panel A; and among
scalp EEG electrodes, Panel B.
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The Caenorhabditis elegans (C. elegans) worm is a well-studied biological organism model. The nervous sys-
tem of C. elegans is particularly appealing to study, since it is a tractable fully functional neuronal network for
which electro-physical connectivity map (connectome) is fully resolved [1,2]. In a recent work, we succeeded in
establishing a computational dynamical model for the C. elegans nervous system and showed that robust oscil-
latory movements in motor neurons along the body can be invoked by constant current excitation of command
sensory neurons (e.g. PLM neurons associated with forward crawling) and that their activation corresponds to
low-dimensional Hopf bifurcation [3]. While these first results validated the model, it is exciting to learn how the
nervous system transforms its oscillatory dynamics to the muscles to support robust full body movements (e.g.
forward crawling) [5]. Moreover, using methods generically applicable to other neuronal circuits, it is intriguing to
understand the optimal sensory stimulations that cause these movements to persist.

We explore these questions by modeling the C. elegans musculature as a viscoelastic rod with discrete rigid
segments [5], and map the neuronal dynamics such that they activate the muscles and deform the rod (Fig.
1A). When motor neuron activity stimulates muscles [2], this activation is translated into force applied to the
rod, which moves in accordance with the physical properties of C. elegans. By stimulating the command PLM
neurons, we establish for the first time that motor neuron dynamics are indeed producing coherent oscillatory full
body movements that resemble forward crawling (Fig. 1B, videos available here).

We utilize our computational full body model to determine the appropriate sensory input for behavior, such as
crawling, to persist after explicit external stimulation (touch) has ceased, as observed in experiments [5]. Since
such persistence could be explained by a feedback loop between the environment and sensory neurons (Fig.
1C), we propose an adaptive control algorithm that extends existing recursive least squares-based algorithms
(e.g. FORCE [6]). Our algorithm finds weights for synaptic input using a low-dimensional projection of motor
neuron dynamics, and is capable of finding sensory input patterns that will lead to the desired movement.

Interneurons Motor neurons
Vi oo
V1 == Q Motor
@1 Q neuron
O= o) output
Xy X2 X3
o o
o Sensory l
B Pos o {ieurons Viscoelastic
o Rod

Weighted sensory
neuron input

Figure 1: A: Structure of viscoelastic rod B: Viscoelastic rod-based simulation of C. elegans crawling during PLM
excitation, videos available here C: Loop feeding transformed motor activity into sensory neurons
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Most of the excitatory cortical synapses reside on dendritic spines. Although these spines undergo a remarkably
high turnover [1, 2], they have been shown to be involved in learning and long-term memory. Along this line, it is
unclear how information is preserved while its substrate (synapses or spines) is permanently changing.

Here, we use a simple stochastic model of structural plasticity to investigate this phenomenon : We assume a
certain number of potential synaptic locations from one neuron to another.

At those locations, synapses (spines) are created with a constant probability and removed with a probability
depending on the number of existing synapses and the stimulation of the neurons. From these two probabilities,
the stationary distribution of the number of synapses between two neurons can be calculated.

Experimental measurements of these stationary probability distributions in the cortex show that the majority
of connections has either zero or multiple synapses while one or two contacts are very improbable [e.g., 3-5].
Using information theoretic measures we show that, in our model, such bimodal distributions enable information
storage over time scales many orders of magnitudes higher than the involved probabilities. Thus, in this system
the conflict of rapid spine turnover (probabilities) and long-term memory is resolved by storing the information
collaboratively in multiple synapses.

In the following, we will consider the bimodal stationary distributions as the working point of the system. Then,
we can model external signals, as, e.g., increased or decreased activities during learning, as changes of the
removal probabilities and stationary distributions (e.g., mediated by synaptic plasticity [6]).

For instance, for learning signals resulting to unimodal stationary distributions (only connected or only uncon-
nected), we find that learning is orders of magnitude faster than forgetting. Along this line, we observe that
retraining a task does not induce an increased overturn rate as during initial training, which has been similarly
observed for dendritic spines in vivo [1, 2]. Our results clearly relate the difference in time scales to the shape
of the stationary distribution and therefore reveal the functional advantage of the bimodal distribution found in
experiment.
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Neural activities are unreliable indicators of features of the external world [1], and an open question is how our
nervous systems function robustly in the presence of this noise. One possibility arises from the observation that
variability is often correlated between neurons [2], leading to the important theoretical question of when and how
noise correlations affect neural population codes. Much work has investigated this issue, leading to impressive
insights about how the relationship between the statistical structures of signals vs noise affects neural population
coding. Despite this progress, an important issue has been largely overlooked by the field: that of firing-rate-
dependent correlations. Notably, the same pair of neurons can display different noise correlations in response to
different stimuli; those correlations coefficients typically increase with increases in the neurons’ firing rates [2,3].

In this paper, we investigate the role of so-called “limited range” correlations on population codes, either in
the presence, or the absence of rate-modulation of the correlation coefficients. Limited-range correlations are
frequently-observed population-wide correlation structures in which cells with similar tuning curves have positive
noise correlations, and the correlations decrease with decreasing tuning curve similarity [2,4]. These patterns
of noise correlation are typically harmful to population coding [5] (yielding worse population coding performance
than would be obtained with the same tuning curves and noise variances for all cells, but no noise correlations);
these effects are somewhat dependent on the degree of heterogeneity in the population’s tuning curves [6,7].

Experimentally reported noise correlations are usually averaged over stimuli, thereby masking any stimulus de-
pendence. Herein, we will demonstrate that, when correlation coefficients increase with the product of mean
neural firing rates (as in [2,3]), the stimulus-averaged correlation coefficients will display limited-range struc-
ture. When the rate dependence of these correlations is ignored, those correlations appear to be quite harmful
to the population code, in accordance with previous theoretical work [5]. Surprisingly, when the rate depen-
dence is taken into account, the correlations can yield much better population coding than would be obtained
in the presence of uncorrelated noise. These effects persist for either homogeneous or heterogeneous sets of
neural tuning curves. One prior study [8] also found that rate-dependent correlations can have very different
impacts on population codes than can rate-independent ones, but did not make the connection between firing-
rate-dependent correlations and the frequently observed limited-range correlation structure. Overall, our results
emphasize that, for understanding the impact of limited-range correlations on neural population coding, the firing-
rate dependence of those correlations is a potentially important consideration. Thus, it is important to report not
only stimulus-averaged correlation coefficients, but also the relationship between those correlation coefficients
and the neural firing rates.
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Hippocampal theta oscillations (4-12 Hz) are consistently recorded during memory tasks and spatial navigation.
While computational models suggested specific mechanisms for theta generation, experimental inactivation of
these mechanisms did not disrupt theta, precluding definitive conclusions about their roles. We investigated this
discrepancy using a biophysical model of the hippocampus that included several of the components implicated
in rhythm generation, all constrained by prior experimental results. The CA3 network model included recurrently
connected pyramidal cells, and inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) cells. The
model was developed by matching experimental results characterizing neuronal firing patterns, synaptic dynam-
ics, short-term synaptic plasticity and the three-dimensional organization of the hippocampus. The model re-
vealed four mechanisms that generated theta oscillations: intrinsic theta resonance of pyramidal cells, recurrent
connections between them, coupling between OLM and pyramidal cells, and, as a novel finding, the correlated
input from entorhinal cortex. Consistent with experimental results, inactivation of any single mechanism did not
disrupt the rhythm. Another novel finding was that the low and high cholinergic states differentially recruited
theta generating mechanisms. Atropine -sensitive and -resistant forms of theta, however, corresponded to theta
generated during low and high levels of network excitation, respectively. These findings provided an alternative
interpretation of the atropine-based classification of theta oscillations, and suggested that the theta rhythm is
an intrinsic property of the network. Any experimental manipulation or brain state that enhances or suppresses
excitation might also, therefore, non-specifically enhance or suppress theta oscillations.
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The activity of cells in the rodent hippocampus is strongly modulated by both the location of the animal and the
ongoing theta oscillation. Place cells, but not interneurons, show a strong spatial modulation of their firing rates,
while both place cells and interneurons exhibit phase precession, a phenomenon whereby they spike at a faster
frequency than the LFP theta oscillation, causing their spikes to shift to an earlier phase of this rhythm on each
successive cycle [1, 2, 3]. Despite extensive research into this phenomenon, the mechanisms underlying phase
precession remain unclear.

Place cells and interneurons are reciprocally connected in the CA1 region of the hippocampus. The interneu-
rons receive pacemaker input from the medial septum, which entrains theta oscillations in the circuit. We tested
whether a minimal model based on this architecture could produce phase precession in place cells and interneu-
rons. Specifically, we simulated a single place cell and interneuron, which interact synaptically. The interneuron
was driven with a constant depolarising input which generates tonic spiking, as well as a weak theta oscillation
which entrains this spiking activity. The place cell received a depolarising input which is only active at a certain
location in the environment, representing the place field.

We found that phase precession in both the place cell and interneuron emerges naturally in this model. When the
animal is outside of the place field, the interneuron is fully entrained to the pacemaker theta oscillation, and the
place cell is rhythmically inhibited, resulting in subthreshold theta oscillations. When the animal enters the place
field, the place cell begins to spike, which perturbs the interneuron and causes it to transiently fire at a frequency
higher than the pacemaker input. In turn, the spiking of the interneuron entrains the place cell, generating phase
precession in the coupled pair.

Generalisation of this model to the network level reveals important constraints. In particular, as there are far fewer
interneurons than place cells in CA1, it is necessary that the same interneuron is coupled to multiple place cells.
In our model, a single interneuron can successfully couple to multiple place cells to generate phase precession,
provided that their place fields do not overlap. This poses constraints on the possible place field mappings in
such a network, and places limits on the fraction of place cells which can be active in a single environment.
When working within these limits, the network can flexibly generate phase precession, both in linear and open
environments, across a vast number of distinct place field mappings.

Our model has several advantages over existing models. First, our model generates phase precession through
the intrinsic dynamics of the circuit, without the need for velocity controlled oscillators upstream. Second, our
model can generate omnidirectional phase precession in open environments, without additional inputs from head
direction cells. Finally, our model generates phase precession independently in each cell, and therefore allows
spatial representations to be flexibly remapped without detriment to the temporal coding of spatial trajectories in
the population [4].

References

[1] O’'Keefe J, Recce M: Phase relationship between hippocampal place units and the EEG theta rhythm.
Hippocampus 1993, 3(3): 317-330.

[2] Maurer AP, Cowen SL, Burke SN, Barnes CA, McNaughton BL: Phase precession in hippocampal in-
terneurons showing strong functional coupling to individual pyramidal cells. The Journal of neuroscience
2006, 26(52): 13485-13492.

[3] Geisler C, Robbe D, Zugaro M, Sirota A, Buzsaki G: Hippocampal place cell assemblies are speed-
controlled oscillators. Proceedings of the National Academy of Sciences 2007, 104(19): 8149-8154.

[4] Chadwick A, van Rossum MCW, Nolan MF: Independent theta phase coding accounts for CA1 popula-
tion sequences and enables flexible remapping. eLife 2015, 4: e03542.

64



019 Self-organization to sub-criticality
Viola Priesemann®2*

!Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Géttingen, Germany
2Bernstein Center for Computational Neuroscience, Géttingen, Germany

Human brains possess sophisticated information processing capabilities, which rely on the interactions of billions
of neurons. However, it is unclear how these capabilities arise from the collective spiking dynamics. A popular
hypothesis is that neural networks assume a critical state [1,2], because in models criticality maximizes infor-
mation processing capabilities [3,4]. However, it has been largely overlooked that criticality in neural networks
also comes with the risk of spontaneous runaway activity [5], which has been linked to epilepsy. Does the brain
indeed assume a critical state, despite the risk of instability? To revisit this question, we analyzed spiking activity
from awake animals, instead of more coarse measures of neural activity (population spikes, LPF, EEG, BOLD)
as in most previous studies. In all recordings (rats hippocampus, cats visual cortex, and monkey prefrontal cor-
tex), spiking activity resembled a sub-critical state, not criticality proper [6]. We confirmed these results using a
novel mathematical approach that is robust to subsampling effects [7] [see Wilting & Priesemann, conference
proceedings CNS 2015]. While ‘self-organization’ to criticality has been widely studied (e.g.[5,8]), it is unclear
what mechanism allows self-organize to sub-criticality instead. Here, we demonstrate that homeostatic plasticity
[9] assures that networks assume a slightly sub-critical state, independently of the initial configuration. Surpris-
ingly, increasing the external input (stimuli) altered the set-point of the network to a more sub-critical state. Our
results suggest that homeostasis allows the brain to maintain a safety margin to criticality. Thereby the brain may
lose processing capability, but avoids instability.
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Large-scale brain dynamics recently started to be modeled numerically based on both heterogeneous large-scale
networks build from diffusion MRI, that is, a connectome, and local homogeneous connectivity kernel represent-
ing intracortical synaptic connections. However, topological properties of a connectome can significantly change
with resolution and parcellation [1]. Furthermore, the sampling of the cerebral surfaces, resulting in a geometric
model, and, in this way, the local connectivity kernel play crucial roles in the formation of spatial patterns on the
cerebral surfaces as well as on the sensor level (e.g., EEG electrodes) by a forward calculation [2]. However, the
effect of sampling and parcellation on modeling brain dynamics has not been studied so far. Here, we investigate
qualitatively and quantitatively: (i) how different parcellation resolutions affect the dynamics of the network; and
(ii) how the local connectivity affects the network dynamics. To do so, we used the neuroinformatics platform
for large-scale brain simulations, called The Virtual Brain (TVB) [3] and developed a preprocessing pipeline to
incorporate experimental data (e.g., structural MR, diffusion-weighted MRI) in TVB [4].

We prepared ten individual models based on ten randomly selected subjects from the Human Connectome
Project dataset [5]. For each individual model we performed simulations under two conditions during rest: (i)
noise driven, using a bistable neural mass model, and (i) after stimulation, using a excitable neural mass model.
We investigated the effect of heterogeneous and homogeneous connectivity on large-scale brain dynamics by dif-
ferent numbers of regions in the parcellation (70 to 2240) and by varying the local connectivity coupling strength.
To introduce experimental data (i.e., structural and diffusion MRI) into TVB we tackled issues such as surface
downsampling (for achieving moderate simulation times) and mapping between surface and parcellation (to
consistently use heterogeneous and homogeneous connectivity) by developing the Surface and Connectivity
Reconstruction with an Imaging Pipeline for TVB Simulations, short SCRIPTS [4].

When considering slow dynamics, the major fiber bundles best reflected in the coarsest parcellation appeared
to be mainly responsible for the emergence of the network attractors with limited changes over different parcel-
lations and different local coupling strengths. For fast dynamics, new qualitative solutions appeared, but only in
the presence of delays.
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Figure 1: A. Spatial attractors. For each value of the global (G) or local (G_local) coupling parameter, correlation
with in-strength (blue points) and with s-core (red points) for ten different initial conditions. The blue square
indicates the critical interval. B. Values for the beginning and end of the critical range as a function of G or
G_local.
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Workshops

w1l Invertebrates as Models of Cognition
Room RB 113, Wednesday and Thursday

James Marshall, Department of Computer Science, University of Sheffield
Kevin Gurney, Department of Psychology, University of Sheffield

Eleni Vasiliki, Department of Computer Science, University of Sheffield
Thomas Nowotny, Department of Informatics, University of Sheffield

This workshop will discuss how invertebrate brains may provide useful models of the bases of cognition, in spite
of their limited size and apparently limited cognitive abilities. Important aspects of the discussion will be how min-
imal cognitive substrates (micro-brains) can, in conjunction with embodiment, lead to surprisingly sophisticated
behaviours, and what lessons we can draw from these examples for the general understanding of cognition. The
workshop should be exciting to the computational neuroscience community, because it brings together ideas of
full-brain models, embodied cognition, and promising new technologies in the form of GPU super-computing and
autonomous robotics.

The invited speakers cover a variety of interesting topics ranging from the visual navigation of ants to odour
processing in bees. Furthermore, the mixture of speakers from both the computational and experimental sides
provide an important ingredient for future progress in the field.

Speakers: ) o
» Jeremy Niven (University of Sussex): TBA

 Esin Yavuz (University of Sussex): TBA
 Alex Cope (University of Sheffield): Modelling Honeybee Vision at Multiple Levels of Detall
» Chelsea Sabo (University of Sheffield): Embodiment of Honeybee Cognition and Behaviour

» Jean-Marc Devaud (Universite Paul Sabatier): The Crucial Role of Inhibitory Transmission for the Resolu-
tion of Ambiguities during Olfactory Reversal Learning

» Martin Nawrot (Free University of Berlin): TBA

» Aurore Avergues-Weber (Université Paul Sabatier): TBA

 Lianne Meah (University of Sheffield): An Approach to Modelling Decision-Making using the Honeybee
» James Turner (University of Sussex): TBA

* Lars Chittka (Queen Mary, University of London): TBA

» Andy Philippides (University of Sussex): TBA

» Natalie Hempel de Ibarra (University of Exeter): TBA

» Andrew Straw (Research Institute of Molecular Pathology): A Dynamical Systems Approach to Cognition
in Drosophila: from Known Visual Circuits to Models of Behavioral Switching

» Barbara Webb (University of Edinburgh): TBA

» Giovanni Galizia (University of Konstanz): System Identification in the Insect Olfactory System: Getting the
Input Right using Computational Tools

« Andrew Barron (Macquarie University): TBA
« Jeri Wright (University of Newcastle): TBA
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Methods of Information Theory in Computational Neuroscience
Room NB C, Wednesday and Thursday

Alexander G Dimitrov, Washington State University
Michael C Gastpar, EPFL

Lubomir Kostal, Institute of Physiology CAS
Tatyana Sharpee, The Salk Institute

Simon R Schultz, Imperial College London

Methods originally developed in Information Theory have found wide applicability in computational neuroscience.
Beyond these original methods there is a heed to develop novel tools and approaches that are driven by prob-
lems arising in neuroscience. A number of researchers in computational/systems neuroscience and in informa-
tion/communication theory are investigating problems of information representation and processing. While the
goals are often the same, these researchers bring different perspectives and points of view to a common set of
neuroscience problems. Often they participate in different fora and their interaction is limited.

The goal of the workshop is to bring some of these researchers together to discuss challenges posed by neuro-
science and to exchange ideas and present their latest work. The workshop is targeted towards computational
and systems neuroscientists with interest in methods of information theory as well as information/communication
theorists with interest in neuroscience.

Speakers:
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Dan Butts (University of Maryland)

Justin Dauwels (Nanyang Technological University): Variational Inference for Graphical Models of Multivari-
ate Piecewise-Stationary Time Series

Alexander Dimitrov (Washington State University, Vancouver)

Michael Gastpar (Ecole Polytechnique Federale de Lausanne)

Cornelius Glackin (University of Hertfordshire): Information and decision-making
Jaroslav Hlinka (Institute of Computer Science CAS, Prague)

Lubomir Kostal (Institute of Physiology CAS, Prague): Efficient information transmission and stimulus cod-
ing in neuronal models

Robert Legenstein (Graz University of Technology): Bayesian learning through stochastic synaptic plasticity
llya Nemenman (Emory University)

Barani Raman (Washington University, St. Louis): Dissecting behavioral relevant features of population
neural activity in a simple olfactory system

Tatyana Sharpee (The Salk Institute)

Simon Schultz (Imperial College London)

Adria Tauste (Universitat Pompeu Fabra): Measuring neuronal information transfer during task performance
via the directed information

Gasper Tkacik (Institute of Science and Technology, Klosterneuburg): Beyond sensory bottleneck: Efficient
coding of elements of visual form

Joel Zylberberg (University of Washington, Seattle): Correlations and the propagation of information through
neural circuits
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Stochastic neural dynamics
Room NB D, Wednesday and Thursday

Peter J Thomas, Case Western Reserve University
Justus Schwabedal, Georgia State University

Naturally occurring neural activity shows broad-band fluctuations and unpredictable transitions in its dynamics.
Such randomness can be an integral aspect of neuronal function; examples range from discrete fluctuations of
ion channels to sudden sleep stage transitions involving the entire brain.

To understand brain function as well as dysfunction, it is therefore necessary to develop analysis and modeling
techniques of neuronal dynamics that explicitly incorporate such random components. Recent examples include
application of techniques derived from the theory of stochastic processes and statistical physics to the analysis
and modeling of stochastic neuronal oscillations; and progress in the analysis of stochastic network models going
beyond mean-field descriptions.

This workshop will bring together leading theorists and applied researchers in the field to inspire and communi-
cate such novel approaches in the study of neural activity.

Speakers:

1. Gerrit Ansmann (University of Bonn (DE)): Randomness and pattern switchings on complex networks of
excitable units.

2. Andrea Barreiro (Southern Methodist University (US)): How single-neuron dynamics modulate correlated
activity in neural circuits.

3. Wilhelm Braun (School of Mathematical Sciences and Centre for Mathematical Medicine and Biology, Uni-
versity of Nottingham (UK)): Integrate-and-fire neurons with stochastic thresholds.

4. Heather Brooks (University of Utah (US)): Quasicycles in the stochastic hybrid Morris-Lecar neural model.

5. Nicolas Brunel (University of Chicago (US)): Effects of neuronal morphology on firing rate dynamics.

6. Jack Cowan (University of Chicago (US)): Stochastic Wilson-Cowan equations for networks of excitatory
and inhibitory neurons.

7. Felix Droste (Bernstein Center for Computational Neuroscience, Berlin (DE)): An analytical approach to
information transmission in the face of up and down states.

8. Farzad Farkhooi (Bernstein Center for Computational Neuroscience, Berlin (DE)): Renewal approach to
the stability analysis of noisy spiking recurrent networks.

9. David Angulo Garcia (Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi (IT)): Stochastic
mean-field formulation of the dynamics of diluted neural networks

10. Kreso Josic (University of Houston (US)): Evidence Accumulation in a Changing Environment.

11. Ryota Kobayashi (National Institute of Informatics (JP)): Estimation of excitatory and inhibitory input rate
from a single voltage trace.

12. Guillaume Lajoie (Max-Planck-Institute of Dynamics and Self-Organization (DE) and University of Washing-
ton (US)): Chaos-induced noise in recurrent networks: Structured deterministic randomness and its impact
on information processing.

13. Enrica Pirozzi (University of Naples Federico Il (IT)): Stochastic modeling of neuronal firing activity by
generalized Ornstein-Uhlenbeck processes.

14. Stefan Rotter (Albert Ludwigs University of Freiburg and Bernstein Center Freiburg): Inhibition-dominated
random networks for stimulus processing in rodent visual cortex.

15. Laura Sacerdote (University of Torino (IT)): A Leaky Integrate-and-Fire neuronal model with Gamma dis-
tributed interspike intervals.

16. Justus Schwabedal (Max-Planck-Institute for the Physics of Complex Systems (DE)): Inference of Phase
Diffusion.

17. Peter Thomas (Case Western Reserve University (US) and Bernstein Center for Computational Neuro-
science, Berlin (DE)): Asymptotic Phase for Stochastic Oscillators.

18. Jonathan Toubol (Collége de France (FR)): On the dynamics of large spiking neuronal networks.

19. John White (University of Utah (US)): Biophysical mechanisms of noise resistance in neurons.
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w4 Methods of System Identification for Studying Information Processing in Sensory Systems
Room RB 209, Wednesday
Aurel A Lazar, Columbia University
Mikko | Juusola, Department of Biomedical Science, University of Sheffield

A functional characterization of an unknown system typically begins by making observations about the response
of that system to input signals. The knowledge obtained from such observations can then be used to derive a
guantitative model of the system in a process called system identification. The goal of system identification is
to use a given input/output data set to derive a function that maps an arbitrary system input into an appropriate
output.

In neurobiology, system identification has been applied to a variety of sensory systems, ranging from insects to
vertebrates. Depending on the level of abstraction, the identified neural models vary from detailed mechanistic
models to purely phenomenological models. Also known as reverse engineering, system identification is at the
core of the BRAIN Initiative.

The workshop will provide a state of the art forum for discussing methods of system identification applied to the
visual, auditory, olfactory and somatosensory systems in insects and vertebrates.

The lack of a deeper understanding of how sensory systems encode stimulus information has hindered the
progress in understanding sensory signal processing in higher brain centers. Evaluations of various systems
identification methods and a comparative analysis across insects and vertebrates may reveal common neural
encoding principles and future research directions.

The workshop is targeted towards systems, computational and theoretical neuroscientists with interest in the
representation and processing of stimuli in sensory systems in insects and vertebrates.

Speakers:

» Eugenia Chiappe (Champalimaud Neuroscience Programme, Champalimaud, Lisbon): Integration of Walk-
ing Direction and Speed Sensitivity in Cell-Specific Motion-Sensitive Visual Neurons

« Thomas R. Clandinin (Stanford University, Palo Alto): TBA

« Martin Egelhaaf (University of Bielefeld, Bielefeld): Motion as a Source of Environmental Information: A
Fresh View on Biological Motion Computation and its Role for Solving Spatial Vision Tasks

¢ C. Giovanni Galizia (University of Konstanz, Konstanz): Honeybee Odor Processing: Neural Networks for
Odor Identity and Evaluation in a World with many Odors and Fast Timescales

« Mikko I. Juusola (University of Sheffield, Sheffield): Saccadic Bursts Drive Maximal Visual Encoding, Im-
proving Vision

¢ Aurel A. Lazar (Columbia University, New York): Projection Neurons in Drosophila Antennal Lobes Signal
the Acceleration of Odor Concentrations

e Chung-Chuan Lo (National Tsing Hua University, Hsinchu): High-Level Information Processing of Sensory
Signals in Nervous Systems

« Thomas Nowotny (University of Sussex, Brighton): Closed-Loop Computational Electrophysiology

« Dong Song (University of Southern California, Los Angeles): Understand Brain Functions from Spikes: A
Nonlinear Dynamical System Identification Approach

» Andrew D. Straw (Research Institute of Molecular Pathology, Vienna): System ldentification of Drosophila
Optomotor Behavior Using Free Flight Virtual Reality
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W5

Neuronal Oscillations: Computational models and dynamics mechanisms
Room RB 101, Wednesday

Horacio G Rotstein, New Jersey Inst of Technology

Oscillatory activity at various frequency ranges have been observed in various areas of the brain (hippocampus,
entorhinal cortex, olfactory bulb among others), and are believed to be important for cognitive functions such as
learning, memory, navigation and attention. These rhythms have bee studied at the single cell level, as the result
of the interaction of a neuron'’s intrinsic properties, at the network, as the result of the interaction between the par-
ticipating neurons and neuronal populations in a given brain region, and at higher levels of organization involving
several of these regions. The advances in this field have benefited from the interaction between experimental
and theoretical approaches.

The purpose of this workshop is to bring together both experimentalists and theorists with the goal of discussing
their results and ideas on the underlying mechanisms that govern the generation of these rhythms at various
levels of organization, and their functional implications for cognition.

Speakers:

Nicolas Brunel (University of Chicago, USA): TBA
Francesco Battaglia (Radboud Universiteit, Nijmegen, The Netherlands): TBA

Carmen Canavier (Louisiana State University, USA): Resonant interneurons can increase robustness of
gamma oscillations.

Laura Colgin (The University of Texas at Austin, USA, tentative): TBA

Mark Cunningham (Newcastle University, UK): TBA

Vassilis Cutsuridis (Foundation for Science and Technology Greece, Greece): TBA

Alain Destexhe (CNRS, France, tentative): TBA

David Hansel (CNRS, tentative): TBA

Stephanie Jones (Brown University, USA): TBA

Stephen Keeley (NYU, USA): TBA

Paola Malerba (UC Riverside, USA, tentative): TBA

Ole Paulsen (Cambridge University, UK): optogenetic induction of hippocampal gamma oscillations.

Horacio G. Rotstein (New Jersey Institute of Technology, USA): Inhibition-based theta resonance in a hip-
pocampal network: a modeling study.

Susanne Schreiber (Humboldt University Berlin, Germany): TBA
Roger Traub (IBM, USA): TBA

73



W6 Beyond the canon: temporal and spatial multiscale organization in cortex
Room RB 210, Wednesday

Bill Lytton, SUNY Brooklyn
Wim van Drongelen, University of Chicago

In addition to new knowledge, recent years have brought a growing appreciation of the complexity of cortical
organization across temporal and spatial scales, requiring a reconceptualization of prior models. We can no
longer think of cells simply as independent distinct processing entities that can be slotted into circuitry and
governed by a clock, in the way that transistors are placed into and driven by a circuit board.

Indeed, there is an intriguing overlapping of scales in cortex. Spatially, cell and network scales are dramatically
intermixed in e.g. layer 5 pyramidal cells: these apical dendrites reach upward across layers of circuit wiring,
receiving dynamically distinct inputs and making dynamically distinct subcellular responses at different circuit
layers. Temporally, feedforward and feedback circuits are not distinct but interact with and through different cor-
tical layers (and cells and dendrites), with responses at different temporal scales governed by imposed and
intrinsic oscillations ranging from milliseconds (fast gamma) to seconds (sub-delta). Here again the activity of
individual cells or subcircuits cannot be abstracted from this complex of multiscale activity. Rather than thinking
hierarchically up the great chain of embeddings (molecule to spine to dendrite to cell to circuit to area ...), we may
need to transform to a different representational frame. Perhaps one can begin to identify distinct spatiotemporal
functional/dynamical modes that manifest across scales.

Speakers:
 Giorgio Ascoli (George Mason U) “Much ADO about BIG memory: A neural mechanism for Background
Information-Gated learning based on Axonal-Dendritic Overlaps”
« Maxim Bazhenov (U California, Riverside) “Sleep Slow Oscillation And Memory Consolidation”

« Jack Cowan (U Chicago) cowangl@gmail.com “Modeling the functional architecture of the visual cortex,
and beyond”

« Gaute Einevoll (NMBU) “Bridging scales with local field potentials (LFPs)”
« Bill Lytton (SUNY Brooklyn) “Multiscale or beyond?”
¢ Henry Markram (or an understudy, Human Brain Project) TBA

« Jorge Mejias (NYU) “Large-scale cortical network models with laminar structure: frequency-specific feed-
forward and feedback interactions”

« Stefan Mihalas (Allen Institute) “Multi-scale approaches to elucidating the computations of a cortical col-
umn”

e Cathy Schevon (Columbia U) “Spatial properties of evolving seizures : what we can learn from human
microelectrode recordings”

« Wim van Drongelen (U Chicago) “The effect of local spike trains on macroscopic epileptiform activity in
time and frequency domains”
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w7

Dendrite function and wiring: experiments and theory

Room RB 211, Wednesday

Michiel Remme, Institute for Theoretical Biology, Humboldt University Berlin
Hermann Cuntz, Ernst Stringmann Institute, Frankfurt

Benjamin Torben-Nielsen, Okinawa Institute of Science and Technology

Neuronal dendritic trees are complex structures that endow the cell with powerful computing capabilities and al-
low for high neural interconnectivity. Studying the function of dendritic structures has a long tradition in theoretical
neuroscience, starting with the pioneering work by Wilfrid Rall in the 1950s. Recent advances in experimental
techniques allow us to study dendrites with a new perspective and in greater detail. For example, dendritic func-
tion can now be studied in awake, behaving animals. Also, owing to the precise characterization of neural circuits,
the role of the single dendrite can be studied in the context of its connectivity. The goal of the workshop is to
provide a resume of the state-of-the-art in experimental, computational and mathematical investigations into the
functions of dendrites in a variety of neural systems.

Speakers:

Michael Hausser (University College London): tha

Giorgio Ascoli (George Mason University): Reconstructing dendrites: from development to computation
Claudia Clopath (Imperial College London): Synaptic plasticity across dendritic location

Peter Jedlicka (Goethe University, Frankfurt): Biologically realistic models of dendritic and synaptic plasticity
in the hippocampus

Greg Jefferis (University of Cambridge): NBLAST: Rapid, sensitive comparison of neuronal structure and
construction of neuron family databases

Daniel Justus (German Center for Neurodegenerative Diseases DZNE, Bonn): Locomotion-speed depen-
dent disinhibition of inputs to CA1 pyramidal neurons is mediated by a medial septal glutamatergic circuit
Athanasia Papoutsi (IMBB-FORTH, Heraklion-Crete): Modeling the interplay of dendritic spikes and net-
work connectivity in persistent activity

Arnd Roth (University College London): Untangling cerebellar circuits with scanning electron microscopy
and focused ion beam milling

Balazs Ujfalussy (Institute of Experimental Medicine HAS, Budapest): Discovery of presynaptic ensembles
by structural and intrinsic plasticity in dendritic branches

Katharina Wilmes (Humboldt University Berlin): Local dendritic inhibition as a simple pathway-specific
switch for Hebbian synaptic plasticity
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w8 Rate vs. temporal coding schemes: mutually exclusive or cooperatively coexisting
Room RB 212, Wednesday
Milad Lankarany, Neuroscience and Mental Health, Hospital for Sick Children, Toronto
Steven A Prescott, Neuroscience and Mental Health, Hospital for Sick Children, Toronto

Deciphering how the brain processes information requires that we understand the diverse neural coding strate-
gies used by different brain areas. Those strategies are often divided into rate and temporal codes (Shadlen
and Newsome, J Neurosci 1998; Softky and Koch, J Neurosci 1993). This division has been the source of much
debate and has often involved championing one strategy by rejecting the other. Although distinct, the two strate-
gies are not necessarily mutually exclusive. Mounting evidence calls for a concerted effort to reconcile the data
favoring each side.

The traditional view is that information is transmitted by the firing rates of individual neurons, and that this is best
achieved by neurons operating independently of each other. However, it has long been observed that neighboring
neurons exhibit correlated spiking; on the surface, these correlations ought to reduce information capacity, but
more detailed consideration reveals that this is not always the case. Moreover, correlations can exist across
many different timescales: Correlations that involve synchronization of spikes are liable to have very different
effects than less precise correlations spanning 100s of milliseconds. Moreover, whether neurons should ideally
operate independently depends on how one frames the problem: Rate coding may benefit from uncorrelated
spiking whereas temporal coding relies on it — precisely timed spikes may be resilient to disruption by noise only
when they occur synchronously across a set of neurons.

This workshop will explore the possibility that different coding strategies co-exist, invigorating an old debate with
a new, more conciliatory approach. It is intended for a broad audience and will ideally attract audience members
from diverse backgrounds. There is deliberately no focus on any one brain area (e.g. hippocampus or visual
cortex) so that insights from different fields can be brought together and the assumptions implicit in any one field
will be challenged. Invited speakers will cover a broad range of topics, addressing how information is encoded
by large neural networks, but also how that encoding is impacted by the biophysical properties of neurons and
synapses. Speakers will address both experimental and theoretical issues. The workshop will finish with an open
forum aimed at discussing issues spurred by the preceding talks.

Speakers:

« Thomas Akam: Oscillatory Multiplexing of Population Codes for Selective Communication in Neural Circuits
* Sonja Gruen: etection of sequences of synchronized spiking activities

 Sliman Bensmaia: The Importance of Spike Timing in Tactile Coding

» Milad Lankarany: Multiplex Coding using Asynchronous and Synchronous Spikes

» Daniel Butts: Temporal precision and information in the awake cortex

* Alain Destexhe: Unexpected Roles of Inhibition in the Awake Brain

« Sungho Hong: Multiplexed coding by cerebellar Purkinje neurons

« Julijana Gjorgjieva: Two Time-scales of Information Transmission in Developing Cortical Neurons

« Jorge Mejias: Neural heterogeneity on rate and temporal coding

» Mario Mulansky: Time-resolved and parameter-free measures of spike train synchrony

* Robert Rosenbaum: Rates, correlations and high-dimensional dynamics in spatially extended balanced
networks

« Constantinos Melachrinos: Deciphering the role of dendritic morphology on temporal coding in the Pre-
Frontal Cortex
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W9

Spike initiation: models and experiments
Room RB 213, Wednesday

Michele Giugliano, Universiteit Antwerpen
Romain Brette, Institut de la Vision, Paris

This workshop will gather leading experimentalists and theoreticians to discuss a pivotal element for our quanti-
tative understanding of neuronal excitability: the initiation of action potentials. Phenomenological, electrophysio-
logical, and computational aspects of spike initiation will be discussed by addressing the following questions:

What models can quantitatively account for experimental observations?

How is spike initiation regulated at different time scales?

What is the role of the various ionic channels expressed in the axonal initial segment?
What is the significance of neuronal morphology and spatial distribution of channels?

What are the functional consequences of spike initiation properties?

Speakers:

Romain Brette (Institut de la Vision, Paris): The compartmentalization of spike initiation

Michele Giugliano (Universiteit Antwerpen, Antwerp): TBA

Andreas Neef (Max Planck Inst. for Dyn. & Self-Org., Gottingen): The biophysical basis of the high-
bandwidth information encoding in cortical neurons

Christian A. Pozzorini (Ecole Polytech. fédérale de Lausanne, Lausanne): Enhanced sensitivity to rapid
input fluctuations by nonlinear threshold dynamics

William J. Spain (University of Washington, Seattle): Functional consequences of adaptation of spike-
threshold-accommodation

Maarten Kole (Netherlands Inst. for neuroscience, Amsterdam): Role of branch geometry in action potential
initiation

Martina Michalikova (Humboldt-Universitiat, Berlin): Spikelets in pyramidal neurons: axonal (output) spikes
that do not activate the soma

Florence Cotel (Queensland Brain Institute, St Lucia): Serotonin induces central fatigue by inhibiting action
potential initiation in motoneurons

Farzan Nadim (New Jersey Institute of Technology, Newark): The synaptic effects of ectopic spike initiation
and the history dependence of axonal conduction
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W10 Neuromechanics and integrative motor control
Room RB 114, Wednesday

Martin Zapotocky, Institute of Physiology of the Czech Academy of Sciences, Prague
Taishin Nomura, Dept Mechanical Science and Bioengineering, Osaka University

Coordinated movement arises from the interaction of the nervous system, the body, and the environment. The
mutual coupling between biomechanics and neural activity has received growing attention in recent years. This
has lead to computational models that successfully capture coordinated movement on the level of a whole or-
ganism - e.g., crawling, swimming, or postural control. Simultaneously, very significant advances in robotics were
inspired by known neural control strategies (e.g., coupled central pattern generators). In addition, recent com-
putational studies have demonstrated how coordinated motor behavior may self-organize from neuromechanical
interactions during development. The general principles of how the organization and activity of the nervous sys-
tem adapts to the mechanics of the body and environment, however, are not yet agreed on.

The workshop brings together researchers with primary background in neuroscience and bio-robotics/neuroengineering,
and aims to facilitate a fruitful interaction of approaches from these two fields. The speakers study a wide range

of organisms/systems, spanning insects, higher organisms, and humanoid robots. The theoretical concepts and
computational methods will provide a unifying framework.

Speakers:
» Shinya Aoi (Kyoto University): Exploring adaptive motor control in locomotion using neuromusculoskeletal
models and legged robots
« Jan Bartussek (University of Rostock): Catch me if you can - embodiment of flight control in flies

< Gennady Cymbalyuk (Georgia State University, Atlanta): Cellular mechanisms governing dynamics of Cen-
tral Pattern Generators

* Auke ljspeert (EPFL, Lausanne): to be confirmed

« Shuhei lkemoto (Osaka University): Mutual inhibition and co-contraction of a musculoskeletal robot arm
using artificial muscle spindles

« Hugo Gravato Marques (Champalimaud Neuroscience Center, Lisbon): From muscle twitches to coordi-
nated behaviour: a developmental approach

« Taishin Nomura (Osaka University): Stability vs variability of human bipedal standing and walking
« Segiy Yakovenko (West Virginia University): Hierarchical synergies for the control of locomotion

« Martin Zapotocky (Czech Academy of Sciences, Prague): Synchronization and frequency tuning in neu-
romechanical systems
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W11l  Computational Models of Midbrain Dopamine Neurons and Dopaminergic Signaling
Room RB 209, Thursday

Carmen Canavier, LSU Health Sciences Center, New Orleans

This workshop will pull together diverse approaches to modeling midbrain dopamine neurons, including simple
one-compartment models that can be easily analyzed using phase-plane techniques as well multi-compartmental
models that include the spatial extent of the dendritic tree or axonal arbor. Some models link models of electrical
activity to cell metabolism, which is clearly important in Parkinson’s disease, for example. We will emphasize the
diversity of dopaminergic subpopulations and the need to tailor models to subpopulations. Different subpopula-
tions have different inputs and distinct targets. There is also evidence for different dynamic range and bursting
mechanisms in different subpopulations, which likely differentially encode motivational value, salience and nov-
elty. We will also have speakers discuss higher level models of dopaminergic signaling, and how single neuron
models might inform the next level of modeling.

Speakers:

» Carmen Canavier (LSU Health Sciences Center, New Orleans): Dynamic Diversity of Dopamine Neurons

» Guillaume Drion (Brandeis University, Waltham): Potential functional implications of a hidden variability in
SNc DA neuron excitability

» Rebekah Evans (NIH-NINDS, Bethesda): T type calcium channels trigger a hyperpolarization induced after
depolarization (HI-ADP) in SNc dopamine neurons

» Jean-Marc Fellous (University of Arizona, Tuscon): Experience-dependent reactivation of VTA neurons
during sleep

» Boris Gutkin (Ecole Normale Superieure, Paris): VTA circuit models and nicotine/alcohol effects on DA
dynamics

« Jinyoung Jang (Sunkyunkwan University, Seoul): Balance between the proximal dendritic compartment and
the soma determines the spontaneous firing rate in midbrain dopamine neurons

 Alexey Kuznetsov (IUPUI, Indianapolis): A model for VTA circuitry: toolbox for the study of addictions

* Andy Oster (Eastern Washington University, Cheney): VTA Dopamine Neuron Dynamics: response to
ramping applied currents

« Eleftheria Pissadaki (University of Oxford, Oxford): From the axons of the SNc dopamine neurons to their
dendritic processes: further clues to susceptibility in Parkinson’s disease
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W12  Computation, Dysfunction, and the Brain
Room RB 213, Thursday
Rowshanak Hashemiyoon, Dept Stereotactic and Functional Neurosurgery, University Hospital of
Cologne
Michel Christoph, Switzerland Campus Biotech

More and more, studies are emphasizing circuitry and network function in the brain. Investigations are focused
on the changes of the functional and anatomical features in a healthy brain as compared to dysfunctional brain
states; thus, studies of the healthy brain fuel insights into brain dysfunction, whilst observations of dysfunctional
brain states give clues to normal brain function.

Knowledge garnered from both domains has given insight into the possible processes or mechanisms under-
lying a range of neurological disorders, including Parkinson’s disease, Tourette syndrome, schizophrenia, and
epilepsy. Theories of changes in neuronal coordination dynamics are adapted to improve therapeutic strategies.
Observations of the outcomes from these applications in turn provide data about the neurophysiological and
computational strategies employed by the brain. One new and exciting arena is the field of brain stimulation. Re-
sults from various investigations determine targets and parameters, while analyses of their outcomes elucidate
circuitry, causality and network interactions.

For example, direct electrophysiological recordings from deep brain stimulation therapy in the human brain pro-
vide information of thalamic dynamics during severe pathology, and also how they change when responding to
therapy. Meanwhile, modeling studies are used to define critical windows for therapeutic intervention in psychiatry
to ensure optimal — and sometimes life-saving — results.

This workshop explores computation in both the healthy and dysfunctional brain to uncover what each state
might reveal about the other. Findings from theoretical, experimental, and clinical studies will be interwoven to
give a more complete understanding of the function and dysfunction of brain circuitry.

The main topics that we will discuss are:

« What are the changes in normal information processing that lead to the aberrations which define disease
states such as observed in various neurological disorders?

* How can we apply those theories to improve therapeutics?

* What strategies can we use to optimize the yield from the neurobiological data from empirical and clinical
studies to elucidate our understanding of normal v. abnormal function?

Speakers:
« Christoph Michel, University of Geneva, Geneva Temporal dynamics of neuronal networks and aberrations
in neurological and psychiatric disorders

« Viktor Jirsa, Aix-Marseille University, Marseille Functional connectivity dynamics in large-scale brain net-
works

» Marc Goodfellow, University of Exeter, Exeter The importance of network structure in seizure generation

« Anthony Grace, University of Pittsburgh, Pittsburgh The circuit dynamics of dopamine system regulation
and its disruption in psychiatric disorders

» Giacomo Koch, Foundation Santa Lucia, Rome Neuromodulation of cortico-cortical circuits with TMS: From
basic neurophysiology to clinical application

* Rowshanak Hashemiyoon, University Hospital Cologne, Cologne How can DBS help us understand the
circuit dynamics of normal v. abnormal function?

» Glnter Schiepek, Paracelsus Medical University, Salzburg Discontinuous patterns of brain activation during
psychothera
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W13  Synaptic plasticity and homeostasis
Room RB 101, Thursday

Pierre Yger, Institut de la Vision, Paris
Matthieu Gilson, Universitat Pompeu Febra, Barcelona

This workshop will gather leading experimentalists and theoreticians to discuss latest results and models on
synaptic plasticity and homeostasis in sensory cortices. Whether synaptic changes strongly depend on the exact
timing of spikes, or on average

ring rates is still a matter of debate and may vary from area to area. However, it is robustly observed, in vitro and
in vivo, that homeostatic mechanisms are important to regulate the global activity. The workshop will therefore
be a unique opportunity to address various questions:

» How is homeostatic regulation expressed both in vitro and in vivo?

How can it be combined with Hebbian forms of learning? Are those two mechanisms competing at a single
synapse?

What are the functional implications of those plasticity mechanisms?

» From a modeler’s point of view, what are the di erent possible implementations of homeostasis, and what
are the links with meta-plasticity?

Speakers:

 Pierre Yger (Institut de la Vision, France): Synaptic plasticity and Homeostasis: a review of concepts

 Christian Tetzla (BCCN Géttingen, Germany): The interaction of synaptic plasticity and scaling and their
role in memory formation

« Alanna Watt (Mc Gill University, Canada): Adaptive regulation of Purkinje cell spiking in spinocerebellar
ataxia type 6

» Taro Toyoizumi (RIKEN BSI, Japan): Modeling the dynamic interaction of Hebbian and homeostatic plas-
ticity

» Sami El Boustani (MIT, USA): Investigation of single-cell plasticity in mouse V1

 Claudia Clopath (Imperial College, UK): Emergence of functional connections in neural networks with
synaptic plasticity

» Per Jesper Sjostrom (Mc Gill University, Canada): Neocortical optogenetic kindling: Emergent seizures
after repeated hyperactivity

» Friedemann Zenke (EPFL, Switzerland): Hebbian and non-Hebbian plasticity orchestrated to form and
retrieve memories in spiking neural networks

» Carlos Stein (EPFL, Switzerland): Theory of cortical plasticity as stable higher-order feature learning
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W14  High-performance computing in neuroscience - from physiologically realistic neurons to full-
scale brain models

Room RB 210, Thursday
Wolfram Schenck, SimLab Neuroscience, Juelich Supercomputing Centre, Forschungszentrum
Juelich, Germany

Alex Peyser, SimLab Neuroscience, Juelich Supercomputing Centre, Forschungszentrum Juelich,
Germany

Markus Butz-Ostendorf, Juelich, Germany

Supercomputing is increasingly available in neuroscience and boosts the ability to create models with a degree of
detail and biological realism never seen before. By the recently available computational power, single cell models
can now represent a highly detailed neuronal morphology, compartmentalized functional interactions between
synapses on a single dendritic branch and even molecular processes on a sub-synaptic scale.

Biological neuronal network models, too, become more realistic as representing a large amount of different cell
types in a realistic layered cortical organization predicting dynamics of spike trains in cortical networks. Different
forms of synaptic and structural plasticity can be combined in one model allowing us to study interfering activity
and connectivity dynamics on different spatio-temporal scales. The ultimate goal is to generate full-scale brain
models on the world’s high-end supercomputers. The hope is that physiologically realistic brain models will
provide us deeper understanding of the healthy and diseased brain and offer novel tools to design new treatment
strategies after brain lesions and for neurodegeneration.

The aim of this workshop is therefore to bring together the leading developers of high performance simulation
and hardware tools in neuroscience with users from experimental fields and to demonstrate potential applications
of the new techniques. Workshop speakers from the HPC domain are encouraged to present how their tools
contribute to the scientific progress in neuroscience while experimentalists should point out the need for HPC
resources in their workflow.

This workshop will be complemented by a special issue in Frontiers in Neuroanatomy entitled “Anatomy and
plasticity in large-scale brain models” (URL: http://journal.frontiersin.org/ResearchTopic/3644).

Speakers:
e Steve B. Furber (Advanced Processors Technology Group, School of Computer Science, University of
Manchester, UK): The SpiNNaker Brain Simulation Machine

« Elisabetta Chicca (Faculty of Technology, Cognitive Interaction Technology — Center of Excellence, Biele-
feld University, Germany): Simulating plasticity with neuromorphic hardware

« Wolfram Schenck (Julich Supercomputing Centre, Forschungszentrum Jilich, Germany): The Simulation
Lab Neuroscience — A novel institution to support Neuroscientists in using HPC infrastructure

* Ben Torben-Nielsen (Computational Neuroscience Unit, Okinawa Institute of Science and Technology
Graduate University, Onna son, Japan): NeuroMac — Simulating virtual dendritic morphologies

« Bill Lytton (Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, USA) / Michael
Hines (Department of Neurobiology, Yale University, New Haven, CT, USA): Modeling detailed neuronal
morphologies and plasticity with NEURON

« Sacha van Albada (Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jilich, Germany):
Large-scale model of the visual cortex in NEST

» Sebastian Rinke (German Research School for Simulation Sciences, Aachen, Germany) / Markus Butz
(Jalich, Germany): RELeARN — Rewiring of full-scale cortical networks

« Karl Zilles (Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jilich, Germany): Polar-
ized light imaging (PLI) — A new dimension in imaging full brain connectivity

« Markus Axer (Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jiilich, Germany): Big
brain — Big data. How to store and process PLI data.

« Petra Ritter (BrainModes Group, Charite, Berlin, Germany): The Virtual Brain
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W15  Metastable Dynamics of Neural Ensembles Underlying Cognition
Room RB 211, Thursday
Emili Balaguer-Ballester, Bournemouth University and Bernstein Center for Computational Neuro-
science, University of Heidelberg
Maurizio Mattia, Istituto Superiore di Sanita Rome, Italy
Ruben Moreno-Bote, Fundacio Sant Joan de Deu Barcelona, Spain

Is the traditional view on cortical activity dynamics, in which the cognitive flow of information wanders through
multiple attractor states driven by task-dependent inputs, still a valid model? This picture has been recently
challenged both empirically and from the modelling perspective. For instance, in several contemporary models,
intrinsic activity fluctuations drive transitions between metastable states even in the absence of external stimuli.
Thus, in these views, noise enriches the dynamical repertoire of available states and temporal scales which per-
mit the flexible processing of task-related cognitive entities. In contrast, another proposed metaphor of transient
brain dynamics consists of a sequence of metastable states composing arbitrary trajectories in the phase space
which are reliably followed by the neural activity, even without the crucial intervention of noise. The interpretation
of the collective dynamics of neuronal assemblies underlying perception and cognitive processing is a very active
debate, touching the essence of our understanding of neural computation, and hence one of the most exciting
topics in neuroscience. In this workshop we will address a range of modelling and data analysis approaches
which focus on metastable nonlinear dynamics underlying perception and cognitive processing. The workshop
will include a short symposium.

Speakers: (tentative titles)

* Sue Denham (Faculty of Health and Human Sciences, Plymouth University, UK): Perceptual multistability
in audition: individual differences, models and unanswered questions.

» James Rankin (Center for Neural Science, New York University, USA): Differential effects of attention and
stimulus manipulations in auditory bistability.

» Gemma Huget (Department of Applied Mathematics |, Universitat PolitA cnica de Catalunya, Spain): Noise
and adaptation in multistable perception: a case study with tristable visual plaids.

» Daniel Durstewitz (Bernstein Center for Computational Neuroscience, Central Institute of Mental Health,
Medical Faculty Mannheim/ Heidelberg University, Germany. School for Computing and Mathematics, Fac-
ulty of Science and Environment, Plymouth University, UK): Assembly dynamics in prefrontal-hippocampal
networks.

» Thomas Nowotny(Centre for Computational Neuroscience and Robotics, School of Engineering and Infor-
matics, University of Sussex, UK): Comparing winnerless competition and a barely stable fixed point as
models of neural dynamics in insect olfaction.

» Pablo Varona (Grupo de Neurocomputacion Bioldgica, Dpto. de Ingenieria Informatica, Escuela Politécnica
Superior, Universidad Autonoma de Madrid, Spain): Heteroclinic dynamics and cognitive functions.

» Christopher Buckley (School of Engineering and Informatics, University of Sussex, UK): The influence of
closed-loop sensorimotor feedback on brain dynamics.

* Alberto Bernacchia (School of Engineering and Science, Jacobs University Bremen, Germany): Cortical
dynamics explained by models of synaptic matrix ensembles.

» Maurzio Mattia (Istituto Superiore di Sanita, Rome, Italy): Heterogeneity in bistable cortical modules: evi-
dence and advantages.

» Emili Balaguer-Ballester (Faculty of Science and Technology, Bournemouth University, UK. Bernstein Cen-
tre for Computational Neuroscience, University of Heidelberg, Germany): Modulation of prefrontal cortex
metastable dynamics by amphetamine.
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W16  Open collaboration in computational neuroscience
Room RB 212, Thursday

Padraig Gleeson, University College London

Building and analysing biophysically and anatomically detailed neuronal networks is a complex and time con-
suming task, which ideally involves researchers with a range of backgrounds and technical skills. However, most
labs cannot expect to have all of these researchers present at any given time. This can lead to stalled projects,
lost data/software and needless repetition of experimental and computational work.

A number of initiatives have been started which address these issues. Some are creating public resources
with freely available data to constrain such models. Others are using best practices from open source software
development to encourage building and sharing of models in a collaborative environment. This workshop will
serve as an informative introduction to these projects as well as a discussion forum for getting feedback and
gathering requirements from the community for the developers of these initiatives.

Speakers:

« Jan Antolik (CNRS): Sumatra/PyNN/Helmholtz/INCF MSM Program/NeuralEnsemble

« Nicholas Cain (Allen Brain Institute): Resources for Open Collaboration at the Allen Brain Institute
« Padraig Gleeson (University College London): NeuroML & the Open Source Brain Initiative

« Stephen Larson (MetaCell Ltd): OpenWorm

¢ Aurel A. Lazar (Columbia University): Neurokernel

« Bill Lytton (SUNY Downstate Medical Center): ModelDB

« Eilif Muller (EPFL): Human Brain Project resources for the integrative modelling community

 Adrian Quintana (University College London): Geppetto: online visualisation & simulation for neuronal mod-
els

» Shreejoy Tripathy (University of British Columbia): Neuroelectro.org

W17  Postdoc and student career strategy workshop
Room RB 209, Wednesday

Jorge Meijas, Computational Lab of Cortical Dynamics, New York University, NY, USA

The computational neuroscience (CNS) community is both international and interdisciplinary, and there are many
possible roads to success in the field. However, the challenges faced by current or soon-to-be postdocs are also
diverse, and excellent mentorship from primary investigators is an invaluable resource for the development of
future leaders in research or industry. This workshop is intended to provide postdocs and students in CNS an
opportunity to hear about several very successful career paths and/or strategies from current leaders in the CNS
community. The workshop will consist of testimonial insights from junior faculty having recently transitioned from
postdoc status, researchers working outside of their home countries, and senior faculty who have witnessed and
steered search committees, reviewing boards, and indeed the field of computational neuroscience itself through
both *fat’ and ’lean’ funding periods and through its exciting continued development. Postdocs and students are
encouraged to ask questions to the speakers and participate in the discussion of topics of universal interest
or specific concerns. Our own concerns are often more universal that we realize until we voice them! You are
all invited to join the discussion. We also kindly ask you to please spread the word to anyone who might be
interested (your students or postdocs, colleagues, etc).

The list of faculty mentors for this year includes:
* Ingo Bojak (UK)
* Romain Brette (France)
* Claudia Clopath (UK)
» Udo Ernst (Germany)
 Pablo Varona (Spain)
« and others...
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P2

P3

P4

P5

Poster Listing

Sunday Posters
Posters P1 - P102

Computational modeling of heterosynaptic plasticity in the hippocampus
Peter Jedlicka'*, Lubica Benuskova?#, and Wickliffe C. Abraham3#

nstitute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
2Department of Computer Science, University of Otago, Dunedin, New Zealand

3Department of Psychology University of Otago, Dunedin, New Zealand

4Brain Health Research Centre, University of Otago, Dunedin, New Zealand

The sensori-motor model of the hippocampal place cells
Anu Aggarwal*

Electrical and Computer Engineering Department, University of Maryland, College Park, MD USA

Short desynchronization epochs in neural synchronization: detection, mechanisms, and func-
tions

Leonid Rubchinsky'?*, Sungwoo Ahn'3

!Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
2stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
3Present address: School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA

Robust estimation of millisecond timescale synchrony under nonstationary conditions and its
physiological interpretation

Jonathan Platkiewicz'*, Kamran Diba?, Pascale Quilichini®#4, Gyorgy Buzsaki®, and Asohan Amaras-
ingham?

!Department of Mathematics, City College, City University of New York, New York, NY 10031, USA
2Department of Psychology, University of Wisconsin-Milwaukee, Wisconsin, WI 53201, USA

3Aix Marseille Université, Institut des Neurosciences des Systemes, Marseille, France

4Inserm, UMR_S 1106, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France

5Neuroscience Institute, New York University, New York, NY 10016, USA

Effects of a reduced efficacy of the KCC2 co-transporter in Temporal Lobe Epilepsy: single neu-
ron and network study

Anatoly Buchin?*, Gilles Huberfeld®>#, Richard Miles®, Anton Chizhov®, and Boris Gutkin®’

YEcole normale supérieure, Laboratoire des Neurosciences Cognitives, Group for Neural Theory (France, Paris)
2peter the Great St.-Petersburg Polytechnic University (Russia, St.-Petersburg)

3Neurophysiology Department, Pitie-Salpetriere Hospital, UPMC (France, Paris)

“Epilepsie de 'Enfant et Plasticité Cérébrale, INSERM U1129 (France, Paris)

SInstitut du Cerveau et de la Moelle Epiniere, Cortex et Epilepsie Group (France, Paris)

Sloffe Physical Technical Institute, Computational Physics Laboratory (Russia, St.-Petersburg)

"Higher School of Economics (Russia, Moscow)
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Role of topology in the spontaneous cortical activity
Silvia Scarpetta'*, Antonio de Candia?, and llenia Apicella’

!Department of Physics “E.R.Caianiello” & INFN, University of Salerno, Fisciano (SA) 84084, Italy
2Department of Physics, University of Napoli “Federico 11", Napoli, Italy & INFN sezione di Napoli, Italy

A network model of neural activity in essential tremor
Nada Yousif'*, Michael Mace?, Nicola Pavese!, Roman Borisyuk®, Dipankar Nandi!, and Peter Bain*

!Division of Brain Sciences, Imperial College London, London, W6 8RF, UK
2Department of Bioengineering, Imperial College London, London, SW7 2AF, UK
3School of Computing and Mathematics, University of Plymouth, Plymouth, PL4 8AA, UK

A biophysical neural network model for visual working memory that accounts for memory bind-
ing errors

Joao Barbosa*, Alberto Compte

Intitut d’'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain

Postsynaptic mechanisms influencing the duration of depolarization discharges in hyperex-
citable neuro-glial networks

Vasily Grigorovsky*, Berj Bardakjian

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada

Different weightings of input components to hippocampal CA1 place cells in young and aged
rats

Frances Chancel*, Andrew Maurer?, Sara Burke2, and Carol Barnes®*®

!Department of Data Driven and Neural Computing, Sandia National Laboratories, Albuquerque, NM 87123, USA
2Department of Neuroscience, University of Florida, Gainesville FL, 32611, USA

3Evelyn F. McKnight Brain Institute

4ARL Div. of Neural Systems, Memory & Aging

SDepartments of Psychology, Neurology and Neuroscience, University of Arizona, Tuscon, AZ 85721, USA

Mechanisms of hippocampal sequence replay
Paola Malerba*, Giri Krishnan, and Maxim Bazhenov

Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92507, USA

Bayesian Supervised Learning and State Estimation in a Model of the Cerebellum
Benjamin Campbell*

Laboratory of Biological Modeling, The Rockefeller University, New York, NY, 10065, USA

Investigating intrinsic and evoked activities in cultured neuronal networks by dimensional re-
duction techniques and high-density MEAs

Thierry Nieus*, Stefano Di Marco, Alessandro Maccione, Hayder Amin, and Luca Berdondini

Neuroscience Brain Technology Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italia
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Cell assembly dynamics of sparse inhibitory networks: a simple model for the activity of the
Medium Spiny Neurons

David Angulo-Garcial*, Alessandro Torcinit, and Joshua Damien Berke?

Yistituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche (CNR), via Madonna del Piano 10, Sesto
Fiorentino, Italy I-50019
2Department of Psychology, University of Michigan, Ann Arbor, 530 Church St., Ann Arbor, MI 48104, USA

Sharp wave-ripple complexes in a reduced model of the hippocampal CA3-CA1 network of the
macaque monkey

Juan F Ramirez-Villegas'?, Nikos K Logothetis®3, and Michel Besservel**

!Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tiibingen,
72076, Germany

2Graduate School of Neural & Behavioral Sciences, International Max Planck Research School, Eberhard-Karls
University of Tlbingen, Tubingen, 72074, Germany

3Centre for Imaging Sciences, Biomedical Imaging Institute, The University of Manchester, Manchester, M13 9PT,
United Kingdom

4Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tiibingen, 72076, Germany

Modelling the Mechanoreceptor’s Dynamic Behaviour
Zhuoyi Song'*, Robert W Banks?, and Guy S Bewick®

Centre for Mathematic, Physics and Engineering in the Life Sciences and Experimental Biology (COMPLEX),
University College London, London, UK

2School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK

3School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK

The functional significance of fasciculation and repulsion in a computational model of axon
growth

Robert Merrison-Hort'*, Oliver Davis?, and Roman Borisyuk?*

1School of Computing and Mathematics, Plymouth University, Plymouth, Devon, PL4 8AA, UK
2Brighton and Sussex Medical School, Brighton, East Sussex, BN1 9PX, UK

Are rich club regions masters or slaves of brain network dynamics?

Leonardo L Gollo**, Andrew Zalesky?, R Matthew Hutchison®, Martijn van den Heuvel*, and Michael
Breakspear!

1systems Neuroscience Group, QIMR Berghofer, Brisbane, Queensland, QLD 4006, Australia
2Melbourne Neuropsychiatry Centre and Melbourne Health, Victoria

3Center for Brain Science, Harvard University, Cambridge, MA, USA

4Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands

Multi-compartmental modeling in Brian 2
Marcel Stimberg>?2, Dan Goodman**, and Romain Brette!>3

1Sorbonne Universités, UPMC Univ. Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France
2INSERM, UMR_S 968, Paris, F-75012, France

3CNRS, UMR 7210, Paris, F-75012, France

4Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
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Emergence of ITD tuning in the MSO with a realistic periphery model
Pierre Ygert234x, Victor Benichoux>234, Marcel Stimberg>?34, and Romain Brette!2-34

nstitut d’Etudes de la Cognition, Ecole Normale Supérieure, Paris, France

2Sorbonne Universités, UPMC Univ. Paris 06, UMR S 968, Institut de la Vision, Paris, F-75012, France
3INSERM, U968, Paris, F-75012, France

4CNRS, UMR 7210, Paris, F-75012, France

Proteomics investigation identifies prominent changes in synapse-related proteins in a fragile X
mouse model

Jantine A C Broek'*, Zhanmin Lin®, Heleen van't Spijker!, Sureyya Ozcan®, Martijn H M de Gruyter?,
Elize D Haasdijk®, Rob Willemsen#, Chris | de Zeeuw?®®, and Sabine Bahn'

1Dept. of Chemical Engineering and Biotechnology, University of Cambridge, UK

2Erasmus Optical Imaging Center, Erasmus MC, Rotterdam, the Netherlands

Dept. of Neurosciences, Erasmus MC, Rotterdam, the Netherlands

4Dept. of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands

SNetherlands Institute for Neurosciences, Royal Academy for Arts and Sciences, Amsterdam, the Netherlands

Numerical Simulations in Two-Dimensional Neural Fields
Pedro Limal?*, Evelyn Buckwar!

Ynstitute of Stochastics, Johannes Kepler University, 4040- Linz, Austria
2CEMAT/Instituto Superior Técnico, University of Lisbon, 1049-Lisboa, Portugal

The Neurodynamics of Epilepsy: A homotopy analysis between current-based and conductance-
based synapses in a neural field model of epilepsy

Andre Peterson®?3*, lven Mareels!, Hamish Meffin*, David B Grayden®®, Mark Cook?3, and Anthony
N Burkitt?®

!NeuroEngineering Lab, Dept. of Electrical & Electronic Engineering, University of Melbourne, Australia
2Department of Medicine, University of Melbourne, Australia

3Centre for Clinical Neurosciences, St. Vincent's Hospital, Melbourne, Australia

“NVRI, Melbourne, Australia

5Bionics Institute, East Melbourne, Australia

Incremental stability of delayed neural fields: a unifying framework for endogenous and exoge-
nous sources of pathological oscillations

Georgios Detorakis>?*, Antoine Chaillet'?

1University Paris Sud, Orsay, 91400, France
21 8S, Supélec, Gif sur Yvette, 91190, France

A Spiking network model of Basal Ganglia to study the effect of Dopamine medication and STN-
DBS during Probabilistic Learning task

Alekhya Mandali, Srinivasa Chakravarthy*

Department of Biotechnology, Bhupat and Mehta School of Biosciences, Chennai, Tamil Nadu, 600036, India

Modulation of neural firing through intracellular ATP dynamics governed by energy feedback
from the vascular system

Karishma Chhabria, Srinivasa Chakravarthy*

Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India
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P29

P30

P31

P32

P33

Could the prior development of the retinotopic map account for the radial bias in the orientation
map in V1?

Ryan Philips*, Srinivasa Chakravarthy

Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India

An auto-encoder network realizes sparse features under the influence of desynchronized vas-
cular dynamics

Ryan Philips*, Karishma Chhabria, and Srinivasa Chakravarthy

Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India

A model of learning temporal delays, representative of adaptive myelination
Meenakshi Asokan'*, Karishma Chhabria?, and Srinivasa Chakravarthy?

!Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India
2Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India

Identifying excitatory and inhibitory synapses in neuronal networks from dynamics using Trans-
fer Entropy

Felix Goetzel2*, Pik-Yin Lail, and C. K. Chan?3

'Department of Physics, National Central University, Chung-Li, Taiwan, R.O.C.

2Taiwan International Graduate Program for Molecular Science and Technology, Institute for Atomic and Molecular
Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.

3Institute of Physics, Academia Sinica, Taipei, Taiwan, R.O.C.

Early Dysregulation of Trigeminal Motor Pool Excitability in a Mouse Model for Neurodegenera-
tive Motoneuron Disease

Sharmila Venugopal'*, Martina Wiedau-Pazos?, and Scott H Chandler*

!Department of Integrative Biology and Physiology, University of California Los Angeles
2Department of Neurology, David Geffen School of Medicine, University of California Los Angeles

Non-invasively recorded transient pathological high-frequency oscillations in the epileptic brain:
a novel signature of seizure evolution

Catherine Stamoulis'?*, Bernard Chang*3

'Harvard Medical School, Boston, MA, 02115, USA
2Departments of Radiology and Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
3Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA

Neuromechanical bistability contributes to robust and flexible behavior in a model of motor pat-
tern generation

David Lyttle}?*, Jeffrey Gill*, Kendrick Shaw?!, Peter J Thomas?, and Hillel Chiel*

1Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
2Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland,
OH 44106, USA
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Investigating the effects of beta-amyloid on hippocampal signalling in Alzheimer’s disease
Julia Warburton®*, Daniel Whitcomb?2, Krasimira Tsaneva-Atanasova®*, and Kei Cho?3

1Bristol Centre for Complexity Sciences, University of Bristol, Bristol, BS8 1TR, UK

2Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), University of Bristol,
Bristol, BS1 3NY, UK

3Centre for Synaptic Plasticity, University of Bristol, Bristol, BS1 3NY, UK

“Department of Mathematics, University of Exeter, Exeter, EX4 4QF, UK

A novel method to find out sensory neuron tracts in the Drosophila brain
Chaochun Chuang*

National Center for High-Performance Computing, Taiwan, R.O.C.

The contribution of subthreshold preference in inhibitory neurons to network response
Tatjana Tchumatchenko'*, Claudia Clopath?

Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438
Frankfurt, Germany
2Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Extending the tempotron with hierarchical dendrites allows faster learning
Sarah Jarvis*, Romain Caze, and Claudia Clopath

Department of Bioengineering, Imperial College London, UK, SW7 2AZ

A phase-locked loop epilepsy network emulator for localizing, forecasting, and controlling ictal
activity

Patrick Watson!*, Kevin Horeckal?, Rama Ratnam*®, and Neal Cohen?

!Beckman Institute of Science and Technology, UIUC, IL, USA
2Neuroscience Program, UIUC, IL, USA

®Department of Psychology, UIUC, IL, USA

4Coordinated Science Laboratory, UIUC, Urbana, IL, USA

®Advanced Digital Sciences Center, lllinois at Singapore Pte. Ltd., Singapore

Using phase response curves to predict synchronization times for neural circuits
Patrick Crotty*
Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, USA

An asymptotic approximation to the cable equation for arbitrary diameter taper
Alexander Bird!?3*, Hermann Cuntz*®

Warwick Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
2School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
SWarwick Systems Biology DTC, University of Warwick, Coventry, CV4 7AL, UK
4Ernst Striingmann Institute for Neuroscience, Frankfurt am Main, Germany
SFrankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
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Model-based prediction of maximum pool size in the ribbon synapse
Caitlyn Parmelee'*, Matthew van Hook?, Wallace Thoreson?2, and Carina Curto*

!Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588

2Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198
3Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center
4Department of Mathematics, The Pennsylvania State University, University Park, PA, 16802

Coregulation of the Na/K pump and the h-current as a mechanism for robust neuromodulation
William Barnett?, Daniel Kueh?, Ronald Calabrese?, and Gennady Cymbalyuk'*

!Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
2Department of Biology, Emory University, Atlanta, Georgia 30322, USA

Robustness of spatial learning in flickering networks
Yuri Dabaghian®?*, Samir Chowdhury?®, Andrey Babichev'?, and Facundo Mémoli®

'Neurology-Pediatrics Department, Baylor College of Medicine, Houston, TX 77030, USA
2Computational and Applied Mathematics, Rice University, Houston, TX, 77005, USA
3Department of Mathematics, Ohio State University, Columbus, OH, 43210

A topological approach to synaptic connectivity and spatial memory
Russell Milton®, Andrey Babichev!?, and Yuri Dabaghian®-?*

!Neurology-Pediatrics Department, Baylor College of Medicine, Houston, TX 77030, USA
2Computational and Applied Mathematics, Rice University, Houston, TX, 77005, USA
3Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, TX 77030, USA

Towards “biophysical psychiatry”: A modeling approach for studying effects of schizophrenia-
linked genes on single-neuron excitability

Maki-Marttunen Tuomo®*, Geir Halnes?, Anna Devor®#, Aree Witoelar!, Francesco Bettella!, Srdjan
Djurovic®, Yunpeng Wang?, Gaute T. Einevoll?, Ole Andreassen!, and Anders Dale34

INORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

2Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, Norway
SDepartment of Neurosciences, University of California San Diego, La Jolla, CA, USA

“Department of Radiology, University of California San Diego, La Jolla, CA, USA

SDepartment of Medical Genetics, Oslo University Hospital, Oslo, Norway

Nonlinear system identification of receptive fields from spiking neuron data
Dorian Florescu, Daniel Coca*

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK

An empirical model of Drosophila Photoreceptor-LMC network
Carlos Luna, Daniel Coca*

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, SI01EQ, UK

Modeling of respiratory network: to sigh or not to sigh
Tatiana Dashevskiy'*, Jan-Marino Ramirez'?

1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
2Department of Neurological Surgery, University of Washington, Seattle, WA, USA
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A model postulating a pivotal role of the levator-depressor neuro-muscular systems in locomo-
tion of the stick insect

Tibor Toth*, Silvia Daun-Gruhn

Heisenberg Research Group of Computational Biology, Institute of Zoology, University of Cologne, 50674 Cologne,
Germany

Modelling searching movements of the front leg in the stick insect by means of a neuro-muscular
model

Tibor Toth'*, Eva Berg?, Ansgar Biischges?, Joachim Schmidt?, and Silvia Daun-Gruhn?

'Heisenberg Research Group of Computational Biology, Institute of Zoology, University of Cologne, 50674 Cologne,
Germany
2Department of Animal Physiology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany

Invariance to frequency and time dilation along the ascending ferret auditory system
Alexander Dimitrovt*, Jean Lienard!, Zachary Schwartz?, and Stephen David?

1Department of Mathematics, Washington State University Vancouver, Vancouver, WA 98686, USA
2Department of Otolaryngology, Oregon Health Sciences University, Portland, OR 97239, USA

Purkinje cells: the forest shapes the trees
Benjamin Torben-Nielsen*, Erik de Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son,
Kunigami-gun, Okinawa, Japan 904-0495

The ionic mechanism of the Purkinje cell dendritic spikes generation and propagation: a model
exploration

Yunliang Zang*, Erik de Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son,
Okinawa 904-0895, Japan

Implementation of Parallel Spatial Stochastic Reaction-Diffusion Simulation in STEPS
Chen Weiliang®*, lain Hepburn®?, and Erik de Schutter®?

1Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0411, Japan
2Theoretical Neurobiology, University of Antwerp, B-2610 Antwerpen, Belgium

Accurate Approximation to Stochastic Reaction Diffusion on Unstructured Meshes in STEPS
lain Hepburn®2*, Chen Weiliang?, and Erik de Schutter'?

Theoretical Neurobiology, University of Antwerp, 2610 Antwerpen, Belgium
2Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa
904-0495 , Japan

ATP consumption in molecular signaling of CA1 Hippocampus neurons
Nikon Rasumov*, Erik de Schutter

Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan



P57

P58

P59

P60

P61

P62

P63

Dynamic model of whole cortex reveals disassortative hub structure in the intracortical connec-
tome

Matthieu Gilson'*, Ruben Moreno-Bote?3, Adrian Ponce-Alvarez?!, Petra Ritter*, and Gustavo Deco?

Center for Brain Cognition, Universitat Pompeu Fabra, Barcelona, 08018, Spain

2parc Sanitari Sant Joan de Déu and Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
SCIBERSAM, Esplugues de Llobregat, 08950 Barcelona, Spain

4Bernstein Center for Computational Neuroscience, Berlin, 10117, Germany

The Neurodynamical Basis of Multi-ltem Working Memory Capacity: Sequential vs Simultaneous
Stimulation Paradigms

Marta Balague!?*, Laura Dempere-Marco?

"Moisés Broggi Hospital, Consorci Sanitari Integral, Sant Joan Despi, Spain, 08970
2Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain,
08018

Firing rate response of neocortical neurons in the fluctuation-driven regime

Yann Zerlaut*, Gilles Ouanounou, Bartosz Telenczuk, Charlotte Deleuze, Thierry Bal, and Alain Des-
texhe

Unité de Neurosciences, Information et Complexité, CNRS, 91198 Gif sur Yvette, France

How neuronal correlations affect the LFP signal?
Bartosz Telenczuk*, Alain Destexhe

Unité de Neurosciences, Information & Complexité, Centre National de la Recherche Scientifiqgue, 91198 Gif-sur-
Yvette, France

Effective connectivity analysis explains metastable states of ongoing activity in cortically em-
bedded systems of coupled synfire chains

Chris Trengove?!, Cees van Leeuwen?, and Markus Diesmann?34*

!Perceptual Dynamics Laboratory, University of Leuven, Leuven, Flemish Brabant, B3000, Belgium

2Institute of Neuroscience and Medicine (INM-68) and Institute for Advanced Simulation (IAS-6), Jillich Research
Centre and JARA, Jilich, Germany

3Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Ger-
many

“Department of Physics, Faculty 1, RWTH Aachen University, Germany

Deterministic neural networks as sources of uncorrelated noise for probabilistic computations

Jakob Jordan'*, Tom Tetzlaff!, Mihai A. Petrovici?, Oliver Breitwieser?, llja Bytschok?, Johannes Bill?,
Johannes Schemmel?, Karlheinz Meier?, and Markus Diesmann?

nstitute for Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jillich Research
Center and JARA, Jilich, Germany

2Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany

3Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria

Using Dynamic Time Warping for Quantifying Effects of Sinusoidal Oscillation Deviations during
EEG Time Series Prediction and for Finding Interesting EEG and fMRI Changes

Martin Dinov*

Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, W2 ONN, UK
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A full rat-scale model of the basal ganglia and thalamocortical network to reproduce Parkinso-
nian tremor

Jan Moren*, Jun Igarashi, Junichiro Yoshimoto, and Kenji Doya

Neural Computation Unit, Okinawa institute of Science and Technology Graduate University, Okinawa, Japan

Should Hebbian learning be selective for negative excess kurtosis?
Claudius Gros, Samuel Eckmann, and Rodrigo Echeveste*

Institute for Theoretical Physics, Goethe University, Frankfurt, 111932 , Germany

Decoding position from multiunit activity using a marked point process filter
Xinyi Deng'*, Daniel Liu?, Kenneth Kay?, Loren Frank?®, and Uri Eden?

!Department of Mathematics and Statistics, Boston University, Boston, MA
2UC Berkeley—UCSF Graduate Program in Bioengineering, UCSF, San Francisco, CA
3Department of Physiology, UCSF, San Francisco, CA

Hybrid scheme for modeling local field potentials from point-neuron networks

Espen Hagen'?*, David Dahmen?!, Maria Stavrinou?, Henrik Lindén®#, Tom Tetzlaff', Sacha van Al-
bada!, Sonja Gruen'®, Markus Diesmann®®’, and Gaute T. Einevoll®8

Ynst. of Neuroscience and Medicine (INM-6) and Inst. for Advanced Simulation (IAS-6), Jiilich Research Center
and JARA, Jilich, 52425, Germany

2Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Aas, 1432, Norway
Dept. of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, 2200, Denmark

“Dept. of Computational Biology, Royal Institute of Technology (KTH), Stockholm, 10044, Sweden

Dept. of Biology, Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, 52074, Germany
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52074, Germany

"Dept. of Physics, Faculty 1, RWTH Aachen University, Aachen, 52074, Germany

8Dept. of Physics, University of Oslo, Oslo, 0316, Norway

Can ionic diffusion have an effect on extracellular potentials?

Geir Halnes*, Tuomo Maki-Marttunen?, Klas H. Pettersen®, Daniel Keller*, Ole Andreassen?, and
Gaute T. Einevoll1®

!Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, Norway
NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

3Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway

“The Blue Brain Project, EPFL, Lausanne, Switzerland

SDepartment of Physics, University of Oslo, Oslo, Norway

Attentional spreading over feature attributes and feature dimensions: Distributed top-down mod-
ulation or joint neural coding?

Lisa Bohnenkamp®?, Detlef Wegener?, and Udo A Ernst*

lComputational Neuroscience, University of Bremen, Bremen, 28359, Germany
2Theoretical Neurobiology, University of Bremen, Bremen, 28359, Germany

Probing information routing mechanisms by precisely-timed electrical stimulation pulses: a
modelling study

Dmitriy Lisitsyn, Daniel Harnack, and Udo A Ernst*

Computational Neuroscience Lab, Institute for Theoretical Physics, University of Bremen, 28359 Bremen, Germany
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Area Summation Is Related To Efficient Neural Representation
Fariba Sharifian23*, Hanna Heikkinen'?, Ricardo Vigario*, and Simo Vanni®

!Brain Research Unit, Department of neuroscience and biomedical engineering, Aalto University, Espoo, Finland
2AMI Centre, Aalto Neuroimaging, Aalto University, Espoo, Finland
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4Department of Information and Computer Science, Aalto University School of Science, Finland

Enhanced novelty detection in auditory scenes through adaptation of inhibition
Bertrand Fontaine*

Laboratory of Auditory Neurophysiology, Faculty of Medicine, University of Leuven, Belgium

Mechanisms of cortical high-gamma activity (60-200 Hz) investigated with computational mod-
eling

Piotr Suffczynski**, Nathan E. Crone?, and Piotr J. Franaszczuk®

!Department of Biomedical Physics, University of Warsaw, Warsaw, 02-093, Poland
2Department of Neurology, The Johns Hopkins University School Of Medicine, Baltimore, MD 21287, USA
3Human Research & Engineering Directorate, U.S. Army Research Laboratory, APG, MD 21005-5425, USA

A reservoir network model for sensory-guided probabilistic decision making
Tomoki Kurikawa'*, Takashi Handa?, and Tomoki Fukai'

!Brain Science Institute, RIKEN, Wako, Saitama, 351-0198, Japan
2Research Center Caesar, Bonn, 53175,Germany

Stimulus induced resonance in a neural mass model driven with a temporally correlated noise
Maciej Jedynak®2*, Antonio J. Pons?, and Jordi Garcia-Ojalvo®

!Departament de Fisica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Barcelona, Spain
2Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomédica de
Barcelona, Barcelona, Spain

Modeling thalamic dynamics with a network of integrate and fire neurons
Alessandro Barardi>?*, Alberto Mazzoni®, and Jordi Garcia-Ojalvo®

IDepartment of Physics and Nuclear Engineering, Universitat Politecnica de Catalunya, Terrassa, 08222 Spain
2Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Barcelona, 08003 ,
Spain

3The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, 56026, Italy

Surprise minimization as a learning strategy in neural networks
Mohammadjavad Farajit*, Kerstin Preuschoff?, and Wulfram Gerstner*

1School of Life Sciences, Brain Mind Institute and School of Computer and Communication Sciences, Ecole Poly-
technique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2Geneva Finance Research Institute, University of Geneva, CH-1211 Geneva, Switzerland.

A hierarchy of time scales supports unsupervised learning of behavioral sequences
Samuel Muscinelli*, Wulfram Gerstner

School of Life Sciences, Brain Mind Institute and School of Computer and Communication Sciences, Ecole poly-
technique fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland
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Bridging spiking neuron models and mesoscopic population models — A general theory for neu-
ral population dynamics

Tilo Schwalger*, Moritz Deger, and Wulfram Gerstner

Brain Mind Institute, Ecole polytechnique fédérale de Lausanne (EPFL) Station 15, 1015 Lausanne, Switzerland

Variable Bin Size Selection for Periestimulus Time Histograms (PSTH) with Minimum Mean
Square Error Criteria

Seyyed Mohsen Heydarieh', Mehran Jahed!*, and Ali Ghazizadeh?

YElectrical Engineering, Sharif University of Technology, Tehran, IRAN
2Laboratory of Sensorimotor Research, National Institutes of Health, Bethesda, USA

Neural model of biological motion recognition based on shading cues.
Leonid Fedorov*, Martin Giese

Section f. Computational Sensomotorics, Dept. of Cogn. Neurology, CIN/ HIH, University Clinic Tuebingen, Ger-
many

Visualizing, editing and simulating neuronal models with the Open Source Brain 3D explorer
Adrian Quintana®, Matteo Cantarelli?, Boris Marin!, R. Angus Silver!, and Padraig Gleeson'*

!Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
2Metacell LLC, San Diego, California, USA

Effects of spike-time dependent plasticity on deep brain stimulation of the basal ganglia for
treatment of Parkinson’s disease

Logan L Grado'*, Matthew D Johnson®?, and Theoden | Netoff!

1Graduate Program in Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
2|nstitute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA

Computational modelling predicts activity-dependent neuronal regulation by nitric oxide in-
creases metabolic pathway activity

Christophe Michel'*, Sarah Lucas?, lan Forsythe?, and Bruce Graham?

1Computing Science and Mathematics, University of Stirling, Stirling, Scotland, FK9 4LA, UK
2Dept Cell Physiology & Pharmacology, University of Leicester, Leicester LE1 9HN, UK

Computational neural modelling of auditory cortical receptive fields
Jordan Chambers'*, Anthony N Burkitt™?, and David B Grayden®?3

!NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne,
Parkville, Victoria 3010, Australia

2Bionics Institute, East Melbourne, Victoria 3002, Australia

3Centre for Neural Engineering, University of Melbourne, Parkville, Victoria 3010, Australia

The interaction between integration and segmentation neurons for motion perception

Parvin Zareil?, Tatiana Kameneva'*, Michael R Ibbotson®, Anthony N Burkitt'#, and David B Gray-
denl#

!NeuroEngineering Lab, Dept Electrical & Electronic Engineering, University of Melbourne, VIC 3010, Australia
2NICTA, Australia

3National Vision Research Institute, Australian College of Optometry, VIC 3053, Australia

“Bionics Institute, East Melbourne, VIC 3002, Australia
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A simple effective model for STDP: from spike pairs and triplets to rate-encoding plasticity
Rodrigo Echeveste*, Claudius Gros

Institute for Theoretical Physics, Goethe University Frankfurt, Hessen, 60438, Germany

Slow points and adiabatic fixed points in recurrent neural networks
Hendrik Wernecke*, Claudius Gros

Institute for Theoretical Physics, Goethe-University, Frankfurt am Main, 60438, Germany

Limit cycles with transient state dynamics in cyclic networks
Bulcsu Sandor*, Claudius Gros

Institut fur Theoretische Physik, Goethe Universitat, Frankfurt am Main, 60438, Germany

Graph theoretical comparison of functional connectivity between cLTP treated and untreated
microelectrode arrays

Myles Akin!, Rhonda Dzakpasu?, and Yixin Guo'*

!Department of Mathematics, Drexel University, Phildelphia, PA, 19104, USA
2Department of Physics, Georgetown University, Washington, DC 20057, USA

Simulation of AMPA and NMDA contribution to postsynaptic response
Crhistian Mg Gutierrez'*, Virginia Gonzalez Vélez', and Amparo Gil?

!Dept. Ciencias Bésicas, Universidad Auténoma Metropolitana Azcapotzalco, 02200 México DF, Mexico
2Dept. MACC, Universidad de Cantabria, 39005 Santander, Spain

Detecting network states in white noise
Jaroslav Hlinka®, Michal Hadrava®2*

nstitute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
2Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Prague,
Czech Republic

Is it right to estimate inter-modular connectivity from local field potentials?
Xue-Mei Cuit?, Won Sup Kim?, Dong-Uk Hwang?®, and Seung Kee Han?*

INormal College, Yanbian University, Yanji 133002, China
2Department of Physics, Chungbuk National University, Cheongju, Chungbuk 361-763, Rep. of Korea
National Institute of Mathematical Sciences, Daejon 305-811, Rep. of Korea

Analyzing adaptive modulation in spinal motor neurons using Multi-Objective Evolutionary Al-
gorithms

Tomasz G Smolinski*, Joseph Lombardo?, and Melissa Harrington?

!Department of Computer and Information Sciences, Delaware State University, Dover, DE 19901, USA
2Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA

Synaptic input patterns triggering local dendritic spikes in vivo
Lea Goetz*, Martine R Groen, Arnd Roth, and Michael Hausser

Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
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Functional consequences of non-equilibrium dynamics caused by antisymmetric and symmetric
learning rules

Dmytro Grytskyy'*, Markus Diesmann®23, and Moritz Helias*

YInstitute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jiilich Research
Centre and JARA, Jilich, Germany

2Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Ger-
many

3Department of Physics, Faculty 1, RWTH Aachen University, Germany

Identifying and exploiting the anatomical origin of population rate oscillations in multi-layered
spiking networks

Hannah Bos!*, Jannis Schiicker!, Markus Diesmann®23, and Moritz Helias?

YInstitute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jiilich Research
Centre and JARA, Jilich, Germany

2Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Ger-
many

3Department of Physics, Faculty 1, RWTH Aachen University, Germany

Homeostatic intrinsic plasticity, neural heterogeneity and memory maintenance
Yann Sweeney’?*, Jeanette Hellgren Kotaleski?, and Matthias Hennig*

1JANC, School of Informatics, University of Edinburgh, UK
2Department of Computational Biology, KTH, Stockholm, Sweden

Brain state dependent stimulus information in the auditory thalamocortical system
Jon Bamber!*, Shuzo Sakata?, and J. Michael Herrmann?

nstitute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, EH8 9AB, UK
Zstrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 ORE, UK
3Institute of Perception, Action and Behaviour, University of Edinburgh, Edinburgh, EH8 9AB, UK

Different roles for ipsilateral positive feed back and commissural inhibitory networks in oculo-
motor velocity to position neural integration

Keiichiro Inagaki*, Yutaka Hirata

Department Robotic Science and Technology, Chubu University, Kasugai, Aichi, 487-8501, Japan

A categorical approach to neurodynamical modelling of musical tonality
Michal Hadrava'?*, Jaroslav Hlinka?

!Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, 166
27, Czech Republic

2Department of Nonlinear Dynamics and Complex Systems, Institute of Computer Science, The Czech Academy
of Sciences, Prague, 182 07, Czech Republic
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Balancing the critical period of spiking neurons with attractor-less STDP
Simon Vogt!*, Ulrich Hofmann?

1BrainLinks-BrainTools, University of Freiburg, Freiburg i. B., Germany
2Neuroelectronic Systems, University Medical Center Freiburg, Freiburg i. B., Germany

Spiking neural network configuration designed for switching between basic forms of movement
in a biped robot

Uziel Jaramillo-Avila, Horacio Rostro-Gonzalez*

Department of Electronics, Engineering Division, University of Guanajuato, Salamanca, Guanajuato, 36885, Méx-
ico

Dynamics analysis of neural univariate time series by recurrence plots

Tamara Tosicl*, Peter Beim Graben?3, Kristin K. Sellers?*, Flavio Frohlich?, and Axel Hutt!

Ynria, CNRS, Loria, UMR n° 7503, Vandceuvre-lés-Nancy, F-54500, France

2Institute of German Studies and Linguistics, Humboldt-University, 10178, Berlin, Germany
3Bernstein Center for Computational Neuroscience, 10178, Berlin, Germany

4University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA

Simulating electrode arrangements on microelectrode arrays
Inkeri Vornanen*, Kerstin Lenk, and Jari A.k. Hyttinen

Tampere University of Technology, Department of Electronics and Communications Engineering, BioMediTech,
Tampere, Finland

Modeling the interplay between Structural Plasticity and Spike-timing-dependent Plasticity
Richard M George*, Peter U Diehl, Matthew Cook, Christian Mayr, and Giacomo Indiveri

Institute of Neuroinformatics, University Zurich and ETH Zurich, Zurich, Switzerland

Understanding short-timescale neuronal firing sequences via bias matrices
Zachary Roth'*, Yingxue Wang?, Eva Pastalkova?, and Vladimir Itskov®

!Department of Mathematics, University of Nebraska—Lincoln, Lincoln, NE 68588, USA
2Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
3Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Effects of multimodal distribution of delays in brain network dynamics
Spase Petkoski'?*, Andreas Spiegler!, Timothée Proix*, and Viktor Jirsa®?

1 Aix-Marseille Université, Inserm, INS UMR_S 1106, 13005, Marseille, France
2Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille, France
SCentre National de la Recherche Scientifique, France

Using the Connectome to predict epileptic seizure propagation in the human brain
Timothée Proix*, Viktor Jirsa
Aix Marseille Université, Inserm, INS UMR_S 1106, 13005, Marseille, France
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Adaptive control of ventilation using electrical stimulation in a biomechanical model
Brian Hillen*, James Abbas?, Adeline Zbrzeski®, Sylvie Renaud?, and Ranu Jung?

!Department of Biomedical Engineering, Florida International University, Miami, Florida, 33174, USA
23chool of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287, USA
3IMS Laboratory, CNRS UMR 5218, Institut Polytechnique de Bordeaux, Talence, 33405, France

Predictable Implications of Random Photon Absorption for Photoreceptors’ Gain Control
Zhuoyi Song'®*, Yu Zhou?, and Mikko Juusola®*

1Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoOMPLEX),
University College London, London, WC1E 6BT, UK

23chool of Computing, Engineering and Physical Sciences, University of Central Lancashire, PR1 2HE, UK
®Department of Biomedical Science, University of Sheffield, UK, S10 2TN

“4State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

An increase in the extracellular potassium concentration can cause seizures
Tianlin Ying?, David B Grayden'2, Anthony N Burkitt'?, and Tatiana Kameneval*

!NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, Vic-
toria 3010, Australia
2Bionics Institute, East Melbourne, Victoria 3002, Australia

Discrete cortical representations and their stability in the presence of synaptic turnover
Bastian Eppler®?*, Dominik Aschauer®, Simon Runpel®, and Matthias Kaschube'?

YFrankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
2Goethe-Universitat, 60438 Frankfurt, Germany
3Johannes-Gutenberg-Universitat, 55122 Mainz, Germany

Influence of recurrent interactions on texture processing in networks with different visual map
organizations

Hanna Kamyshanska*, Dmitry Bibichkov, and Matthias Kaschube

Frankfurt Institute for Advanced Studies and Faculty of Computer Science and Mathematics, Johann Wolfgang
Goethe University, Frankfurt am Main, 60438, Germany

A Newton-based shooting method to find synaptic threshold in active cables
William Kath*

Departments of Applied Mathematics and Neurobiology, Northwestern University, Evanston, IL 60201, USA

Fully-automated multi-objective optimization for fitting a neuronal model with real morphology
Aushra Abouzeid'*, Nelson Spruston?, and William Kath?®

'Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
°Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA

Granule cell excitability mediates gamma and beta oscillations in a model of the dendrodendritic
microcircuit

Boleslaw Osinskil3*, Leslie M Kay?*

!Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
2Department of Psychology, University of Chicago, Chicago, IL 60637, USA
3|nstitute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
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Distinct and competing interneuron populations can generate fast and slow gamma in oscilla-
tory models of CAl

Stephen Keeley*, Andre A Fenton?, and John Rinzel*?

Center for Neural Science, New York University, New York, NY 10003, USA
2Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

Modeling spontaneous activity across an excitable epithelium: Support for a coordination sce-
nario of early neural evolution

Oltman de Wiljes'*, Ronald van Elburg?, Michael Biehl®, and Fred Keijzer*

IDepartment of Theoretical Philosophy, Groningen University, Groningen, The Netherlands

2Institute of Avrtificial Intelligence, Groningen University, Groningen, The Netherlands

3Johann Bernoulli Institute for Mathematics and Computer Science, Groningen University, Groningen, The Nether-
lands

Mechanisms of spikelet generation in cortical pyramidal neurons
Martina Michalikova®*, Michiel Remme?, and Richard Kempter'2

Hnstitute for Theoretical Biology, Department of Biology, Humboldt-Universitat zu Berlin, 10115 Berlin, Germany
2Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany

Spiking network modeling of neuronal dynamics in individual rats

John Choi!, Rosemary Menzies?, Salvador Dura-Bernal®, Joseph Francis!, William W Lytton!, and Cliff
C Kerrl:2:3*

'Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 10029, USA
2Complex Systems Group, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
3Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW 2006, Australia

T-type calcium channels trigger a hyperpolarization induced afterdepolarization in substantia
nigra dopamine neurons

Rebekah Evans*, Zayd Khaliq
NINDS, NIH, Bethesda, MD 20892, USA

Assessing Performance of Directed Functional Connectivity Measures in the Presence of Com-
mon Source

Jisung Wang, Heonsoo Lee*, and Seunghwan Kim

Physics Department, Pohang University of Science and Technology, Pohang, South Korea

How slow K+ currents impact on spike generation mechanism?
Ryota Kobayashi'-?*, Katsunori Kitano®

1Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo, Japan

2Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo, Japan

3Department of Human and Computer Intelligence, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-
8577, Japan

Excitatory to inhibitory connectivity shaped by synaptic and homeostatic plasticity
Claudia Clopath*, Jacopo Bonon, and Ulysse Klatzmann

Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
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Phase lead/lag due to degree inhomogeneity in complex oscillator network with application to
brain networks

Junhyeok Kim?!, Joon-Young Moon?, Uncheol Lee?3, George Mashour?3, Seunghwan Kim?!, and Tae-
Wook Ko**

!Nonlinear and Complex Systems Laboratory, Department of Physics, Pohang University of Science and Technol-
ogy, Pohang 790-784, Republic of Korea

2Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA

3Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Ml 48109, USA

“National Institute for Mathematical Sciences, Daejeon 305-811, Republic of Korea

Dynamics on global brain networks at the neuronal resolution
Masanori Shimono'?*, Ryota Kobayashi®

!Department of Physics, University of Indiana, Bloomington, IN, 47405, USA
2Harvard/MGH, 149 13th St, Charlestown, MA, 02129, USA
3National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda, Tokyo 101-0003, Japan

Subthreshold resonance in biophysically-based models of low- and high-input conductance mo-
toneurons

Vitor M Chaud*, André Kohn

Biomedical Engineering Laboratory, Dept. of Telecommunication and Control Engineering, University of Sdo Paulo,
Sao Paulo, SP, 05508-900, Brazil

A super-resolution approach for receptive fields estimation of neuronal ensembles
Daniela Pamplona'*, Gerrit Hilgen?, Bruno Cessac?, Evelyne Sernagor?, and Pierre Kornprobst?

LINRIA Sophia Antipolis Méditerranée, Neuromathcomp, 2004 Route des Lucioles, 06902 Valbonne, France
2|nstitute of Neuroscience, Faculty of Medical Sciences, Framlington Place, Newcastle upon Tyne, NE2 4HH

Nonparametric estimation of characteristics of the interspike interval distribution
Ondrej Pokora'*, Lubomir Kostal?

!Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
2Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

The role of mechanosensory T cells for stimulus encoding in the local bend network of the leech
Friederice Pirschel*, Oliver Kuehn, and Jutta Kretzberg

Computational Neuroscience, University of Oldenburg, D-26111 Oldenburg, Germany

Time-resolved and parameter-free measures of spike train synchrony: Properties and applica-
tions

Mario Mulansky*, Nebojsa Bozanic, and Thomas Kreuz

Institute for Complex Systems, CNR, Sesto Fiorentino, 50019, Italy

Detecting parallel bursts in in silico generated parallel spike train data
Christian Braune*, Rudolf Kruse

Institute for Knowledge Engineering and Language Processing, Otto von Guericke University, Magdeburg, Ger-
many
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Minimal set of nodes to control the dynamics of biological neuronal networks
Simachew Mengiste>?*, Ad Aertsen?, and Arvind Kumar?

Faculty of Biology and Bernstein Center Freiburg, University of Freiburg, Germany.
2Computational Biology, School of Computer Science and Communication, KTH, Stockholm, Sweden.
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A role of local VTA GABAergic neurons in mediating dopamine neuron response to nicotine

Ekaterina Morozova'*, Maxym Myroshnychenko?, Marie Rooy?, Boris Gutkin®4, Christopher Lapish®,
and Alexey Kuznetsov®

!Department of Physics, Indiana University, Bloomington, IN, 47405, USA

2program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA

3Group of Neural Theory, ENS, Paris, 75005, France

“National Research University Higher School of Economics, Moscow, 101000, Russia
SAddiction Neuroscience Program, IUPUI, Indianapolis, IN, 46202, USA
5Department of Mathematics, IUPUI, Indianapolis, IN, 46202, USA

Qualitatively different scenarios for co-activation of NMDA, AMPA and GABA receptor currents
on dopaminergic neuron

Denis Zakharov'?*, Alexey Kuznetsov®

!Department of Nonlinear Dynamics, Institute of Applied Physics, RAS, Nizhny Novgorod, Russia, 603950
2Laboratory of Nonlinear Physics, Nizhny Novgorod State University, Nizhny Novgorod, Russia, 603022
3Department of Mathematical Sciences and Center for Mathematical Modeling and Computational Sciences, IUPUI,
Indianapolis, IN 46202, USA

Prefrontal-hippocampal theta coherence, sharp wave ripples, and bursts of cortical unit activity
underlie choices and encoding in the radial arm maze

Maxym Myroshnychenko®*, Christopher Lapish?

lProgram in Neuroscience, Indiana University, Bloomington, Indiana 47401, USA
2Addiction Neuroscience Program, Indiana University-Purdue University, Indianapolis, Indiana 46202, USA

Mode-Locking Behavior of Izhikevich Neurons under Periodic External Forcing
Amirali Farokhniaee'*, Edward W. Large®?

lDepartment of Physics, University of Connecticut, Storrs, CT, 06268, USA
2Department of Psychology, University of Connecticut, Storrs, CT, 06268, USA

The OpenWorm Project: currently available resources and future plans

Padraig Gleeson'?*, Matteo Cantarelli?, Michael Currie?, Jim Hokanson®2, Giovanni Idili?, Sergey
Khayrulin?>#, Andrey Palyanov?#, Balazs Szigeti®>®, and Stephen Larson?

!Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
20OpenWorm.org

3Department of Biomedical Engineering, Duke University, Durham, NC, USA

4Lab. of Complex Systems Simulations, A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Rus-
sian Academy of Sciences, Novosibirsk, 630090, Russian Federation

SNeuroinformatics Doctoral Training Centre, University of Edinburgh, Edinburgh, UK
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Encoding of information using neural fingerprints
José Carrillo-Medina®*, Roberto Latorre?

!Departamento de Eléctrica y Electrénica, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador.
2Grupo de Neurocomputacion Bioldgica, Dpto. de Ingenieria Informatica, Escuela Politécnica Superior, Universidad
Auténoma de Madrid, 28049 Madrid, Spain

Reconstructing dynamical models from optogenetic data
Sorinel A Oprisan'*, Patrick Lynn?, Tamas Tompa®#, and Antonieta Lavin®

!Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA
2Depar'[ment of Computer Science, College of Charleston, Charleston, SC 29424, USA
3Department of Neuroscience, Medical University of South Charleston, Charleston, SC 29424, USA
“Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary

Computational Model of Medial Temporal Lobe Epilepsy
Sora Ahn'*, Sangbeom Jun?, Hyang Woon Lee?, and Seungjun Lee?!

!Department of Electronics Engineering, Ewha Womans University, Seoul, 120-750, Korea
2Department of Neurology, Ewha Womans University, Seoul, 120-750, Korea

PyMICE - a Python(TM) library for analysis of mice behaviour

Jakub Kowalskil*, Alicja Puscian®, Zofia Mijakowska?, Maria Nalberczak?, Kasia Radwanska?, and Szy-
mon Leskit

!Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
2Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, 02-093,
Poland

A Biologically Based Neural Network Model for Decision Making
Azadeh Hassannejad Nazirt*, Hans Liljenstrom?-2

!Department of Energy and Technology, SLU, Uppsala, SE-75007, Sweden
2Agora for Biosystems, Sigtuna, SE-19322, Sweden

Numerical characterization of noisy fluctuations in two different types of stochastic differential
equation models of neural signaling

Tiina Manninen'*, Jukka Intosalmi?, Keijo Ruohonen®, and Marja-Leena Linne?!

!Department of Signal Processing, Tampere University of Technology, Tampere, Finland
2Department of Computer Science, Aalto University, Espoo, Finland
3Department of Mathematics, Tampere University of Technology, Tampere, Finland

Extending computational models of astrocyte-neuron interactions with biochemical mecha-
nisms on the postsynaptic terminal

Ausra Saudargiene?, Tiina Manninen?, Riikka Havela?, and Marja-Leena Linne?*

!Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
2Department of Signal Processing, Tampere University of Technology, Tampere, Finland
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Information-theoretic analysis of a dynamic release site using a two-channel model of depres-
sion

Mehrdad Salmasi'3*, Martin Stemmler?#, Stefan Glasauer!23°, and Alex Loebel?*

!Graduate School of Systemic Neurosciences, Ludwig-Maximilian University, Munich, Germany
2Bernstein Center for Computational Neuroscience, Munich, Germany

3German Center for Vertigo and Balance Disorders, Ludwig-Maximilian University, Munich, Germany
4Department of Biology Il, Ludwig-Maximilian University, Munich, Germany

SDepartment of Neurology, Ludwig-Maximilian University, Munich, Germany

Interplay of Intrinsic and Network Heterogeneity in Strongly Recurrent Spiking Networks
Cheng Ly*

Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Vir-
ginia 23284, USA

Parallelizing large networks using NEURON-Python
Alexandra H Seidenstein?, Robert A McDougal*, Michael Hines*, and William W Lytton*

'Dept. of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
2Dept of Chemical & Biomolecular Engineering, New York University, NY, USA

3Kings County Hospital Center, Brooklyn, NY, USA

“Dept of Neurobiology, Yale University New Haven, CT, USA

Motor cortex neurons: from experiment to model via evolutionary algorithms

Samuel Neymotinl*, Benjamin Suter?, Michele Migliore®, Salvador Dura-Bernal®, Gordon Shepherd?,
and William W Lytton®4

!Department Physiology & Pharmacology, SUNY Downstate, Brooklyn, NY, 11203, USA
2Department Physiology, Northwestern University, Chicago, lllinois, 60611, USA
%Institute of Biophysics, National Research Council, Palermo, Italy

“Department of Neurology, Kings County Hospital Center, Brooklyn, NY, 11203, USA

Large-scale M1 microcircuit model with plastic input connections from biological PMd neurons
used for prosthetic arm control

Salvador Dura-Bernal**, Cliff C Kerr?, Samuel Neymotin®, Benjamin Suter®, Gordon Shepherd?, Joseph
Francis!, and William W Lytton?!

!Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY 11203, USA
2School of Physics, University of Sydney, Sydney, NSW, Australia
3Department Physiology, Northwestern University, Chicago, lllinois, 60611, USA

A lower bound on the number of mechanisms for discriminating fourth and higher order spatial
correlations

John Wg Seamons*, Marconi S Barbosa, Anton Bubna-Litic, and Ted Maddess

Eccles Institute for Neuroscience, John Curtin School of Medical Research, ANU, Canberra, ACT 0200, Australia

Spatiotemporal brain network analysis of healthy humans based on magnetoencephalography
and functional MRI in the resting state

Margaret Y Mahan®?*, Arthur C Leuthold®2, and Apostolos P Georgopoulos!??3

!Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis,
MN 55455, USA

2Brain Sciences Center, VA Health Care System, Minneapolis, MN 55417, USA

3Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
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Pattern Recognition of Hodgkin-Huxley Equations by Auto-regressive Laguerre Volterra Network
Kunling Geng'?*, Vasilis Marmarelis®?

!Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089, USA
2Bjomedical Simulations Resource, Los Angeles, CA 90089, USA

Neural coding of monaural and binaural intensity at low stimulus frequencies
Zbynek Bures!?, Petr Marsalek34*

!Dept. of Electric Engineering and Computer Science, College of Polytechnics, Jihlava, 586 01, Czech Republic
2|nst. of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, 142 20, Czech Republic
3Dept. of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, 128 53, Czech Republic
4Czech Technical University in Prague, Zikova 1903/4, 166 36, Czech Republic,

Voltage sensitive currents and information processing by single neurons
Eduard Kuriscak!, Zdenek Wunsch'2, and Petr Marsalek?3*

nstitute of Physiology, First Faculty of Medicine, Charles University in Prague, 128 00, Czech Republic
2Inst. of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, 128 53, Czech Republic
3Czech Technical University in Prague, Zikova 1903/4, 166 36, Czech Republic

A neural model of the optomotor system accounts for ordered responses to decreasing stimulus
spatial frequencies

Alex Copel*, Chelsea Sabo?, Eleni Vasilaki', Kevin Gurney?, and James Marshall*

!Department of Computer Science, University of Sheffield, Sheffield, S10 2TN, UK
2Department of Psychology, University of Sheffield, Sheffield, S10 2TN, UK

Orientation selectivity in a model of primary visual cortex with and without orientation map
Soledad Gonzalo Cogno*, German Mato

Statistical and Interdisciplinary Physics Group, Instituto Balseiro and Centro Atdmico Bariloche, Bariloche, 8400,
Argentina

When function mirrors structure: how slow waves are shaped by cortical layers

Cristiano Capone®?*, Beatriz Rebollo®, Alberto Mufioz-Cespédes?*, Paolo Delgiudice?, Maria Victoria
Sanchez-Vives®®, and Maurizio Mattia?

'PhD Program in Physics, Sapienza University, Rome, ltaly
2|stituto Superiore di Sanita, Rome, ltaly

%IDIBAPS, Barcelona, Spain

“Universidad Complutense de Madrid, Madrid, Spain
®ICREA, Barcelona, Spain

A novel method for approximating equilibrium single-channel Ca2+ domains
Victor Matveev*

New Jersey Institute of Technology, NJ 07030, USA
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How central inputs and force and velocity feedbacks determine motoneurons activity during
voluntary hand movements

Alberto Mazzoni'*, Francesco Petrini®3, Jacopo Rigosa'?2, Marco Capogrosso®3, Stanisa
Raspopovic'?2, and Silvestro Miceral?3

1The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, 56026, Italy

2Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, School of Engineering,
Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

SCenter for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

Induction of Long-Term Potentiation and Depression in individual synapses of CAl pyramidal
neurons

Rosanna Migliore*, Giada de Simone, and Michele Migliore

Institute of Biophysics, National Research Council, via Ugo La Malfa 153, 90146 Palermo, Italy

Cell-type specific connectivity accounts for diverse in vivo functional roles of inhibitory neurons
inV1

Jung H Lee, Stefan Mihalas*
Allen Institute for Brain Science, Seattle, WA 98103, USA

Reconstructing the directionality of coupling between cortical populations with negative phase
lag
Fernanda Matias'*, Leonardo L Gollo?, Pedro V Carelli®, Mauro Copelli®, and Claudio Mirasso*

Ynstituto de Fisica, Universidade Federal de Alagoas, Maceio, AL 57072-900, Brazil

2systems Neuroscience Group, Queensland Institute of Medical Research, Brisbane QLD 4006, Australia
3Departamento de Fisica, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil

4Instituto de Fisica Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus Universitat de les llles Balears, E-
07122 Palma de Mallorca, Spain

On the basic mechanisms of anticipated synchronization in neuronal circuits

Fernanda Matias®, Ana Paula Milan?, Luis Martinez Otero®, Santiago Canals®, Pedro V Carelli*, Mauro
Copelli*, and Claudio Mirasso®*

nstituto de Fisica, Universidade Federal de Alagoas, 57072-900 Macei6, Brazil

2Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, 18071 Granada, Spain
%Instituto de Nuerociencias de Alicante, 03690 Sant Joan d’Alacant, Spain

4Departamento de Fisica, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil

SInstituto de Fisica Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus Universitat de les llles Balears, E-
07122 Palma de Mallorca, Spain

Information transfer by local field potentials in the hippocampal formation
Maria Constantinou*, Daniel Squirrell, John Gigg, and Marcelo Montemurro

Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK

ROS-MUSIC Toolchain for Spiking Neural Network Simulations in a Robotic Environment
Philipp Weidel**, Renato Duarte!, Karolina Korvasova?!, Jenia Jitsev!, and Abigail Morrison®23

Ynstitute of Advanced Simulation (IAS-6) & Institute of Neuroscience and Medicine (INM-6), Forschungszentrum
Juelich, 52425 Juelich, Germany

2Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, 44801 Bochum, Germany
SSimulation Laboratory Neuroscience — Bernstein Facility for Simulation and Database Technology, Institute for
Advanced Simulation, Jilich Aachen Research Alliance, Julich Research Center, Julich, Germany
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SPIKE-Synchronization: A parameter-free and time-resolved coincidence detector with an intu-
itive multivariate extension

Thomas Kreuz*, Nebojsa Bozanic, and Mario Mulansky

Institute for Complex Systems, CNR, Sesto Fiorentino, Italy

Novel perspective on field recordings in zebrafish models of epilepsy
Adriana Dabacan®?*, Sorana Ciura®, Edor Kabashi®, Hortense de Calbiac®, and Raul Muresan?

1Coneural, Romanian Institute of Science and Technology, Cluj Napoca, Romania
2Basis of Electronics, UTCN, Cluj-Napoca, Romania
3 Amyotrophic lateral sclerosis: from genetics to treatment, ICM, Paris, France

Shaping Pathological Cortical Dynamics with High-Frequency Neurostimulation
Jérémie Lefebvre'*, Micah M. Murray?

Laboratory for Investigative Neurophysiology (The LINE), Centre Hospitalier Universitaire Vaudois, Lausanne,
1011, Switzerland
2EEG Brain Mapping Core, Centre for Biomedical Imaging (CIBM), 1011 Lausanne, Switzerland

Synaptic inputs are tuned to match intrinsic properties to maintain phase in oscillatory neural
networks

Haroon Anwar*, Jordan C Storms, and Farzan Nadim

Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark,
Newark, NJ 07102, USA

Dynamical Sensory Representations establish a Rapid Odor Code in a Spiking Model of the
Insect Olfactory System

Rinaldo Betkiewicz12*, Farzad Farkhooi'2, and Martin Paul Nawrot!2:3

Theoretical Neuroscience / Neuroinformatics, Freie Universitét Berlin
2Bernstein Center for Computational Neuroscience Berlin
3Computational Systems Neuroscience, University of Cologne, Germany

Application of generalized linear models to investigate functional synaptic coupling and syn-
chrony in an animal model of schizophrenia

Jennifer Zick}?*, Rachael Blackmanl23, Matthew Chafeel3, and Theoden | Netoff}4

!Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA

2Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455 USA
3Brain Sciences Center, VA Medical Center, Minneapolis, MN 55417 USA

“Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA

The Role of Horizontal Connections for the Modulation of Border-Ownership Selective Neurons
in Visual Cortex

Nobuhiko Wagatsuma'*, Rudiger von der Heydt?, and Ernst Niebur?

1School of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki, Saitama 350-0394, Japan
2Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, 21218, USA

A computational model of cell culture dynamics: the role of connectivity and synaptic receptors
in the appearance of synchronized bursting events

Davide Lonardoni, Stefano Di Marco, Hayder Amin, Luca Berdondini, and Thierry Nieus*

Istituto Italiano di Tecnologia, Genova, Italy
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PyRhO: A virtual optogenetics laboratory

Benjamin Evans'*, Sarah Jarvis?, Simon R Schultz?, and Konstantin Nikolict

nstitute of Biomedical Engineering, Department of Electrical & Electronic Engineering, Imperial College London,

London SW7 2AZ, UK
2Department of Bioengineering, Electrical Engineering, Imperial College London, London SW7 2AZ, UK

An Efficient and Accurate Solver for Large, Sparse Neural Networks
Roman Stolyarov!?, Andrea Barreiro'*, and Scott Norris®

1Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA
2Current address: Harvard-MIT Department of Health Sciences and Technology, Cambridge, MA 02139, USA

Noise signature on interval timing
Sorinel A Oprisan*, Derek Novo

Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA

Spiking neural network model of reinforcement learning in the honeybee implemented on the

GPU
Esin Yavuz!*, Pascale Maul?, and Thomas Nowotny?!

1CCNR, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
2Institute of Cognitive Science, University of Osnabriick, 49069 Osnabriick, Germany

Estimating Numerical Error in Neural Network Simulations on Graphics Processing Units
James P. Turner, Thomas Nowotny*

Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, BN1 9RH, UK

Low-dimensional spike rate dynamics of coupled adaptive model neurons
Moritz Augustin-?*, Josef Ladenbauer'?, and Klaus Obermayer-2

Neural Information Processing Group, Berlin Institute of Technology, Berlin, Germany
2Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany

pypet: A Python Toolkit for Simulations and Numerical Experiments
Robert Meyer!2*, Klaus Obermayer!?

'Neuroinformatics Group, Technische Universitaet Berlin, 10587 Berlin, Germany
2Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany

Extending integrate-and fire model neurons to account for the effects of weak electric fields in

the presence of dendrites
Florian Aspart®?*, Josef Ladenbauer®?, and Klaus Obermayer*?

!Neural Information Processing Group, Berlin Institute of Technology, Berlin, Germany
2Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany

Decoding of naturalistic textures from spike patterns of neuromorphic artificial mechanorecep-

tors
Alberto Mazzoni*, Udaya Bhaskar Rongala, and Calogero Oddo

The BioRobotics Institute, Scuola Superiore Sant’/Anna, Viale Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
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Hierarchical organization of multiscale communities in brain networks is non-tree structured
Hiroshi Okamoto®-2*

IRIKEN Brain Science Institute, Saitama, 351-0198, Japan
2Research & Development Group, Fuji Xerox Co. Ltd., Kanagawa, 220-8668, Japan

Sourcing brain histone modification data and development of algorithm for identification of hy-
persensitive sites

Victor Osamor®-2*

!Department of Computer and Information Sciences, Covenant University, PM.B 1023, Ota, Ogun State, Nigeria
?Institute of Informatics, University of Warsaw, ul Banacha 2, 02-097, Warsaw, Poland

Vibrational resonance in feed-forward-loop neuronal network motifs
Ali Calim®*, Ugur llerit, Muhammet Uzuntarla®, and Mahmut Ozer?

!Department of Biomedical Engineering, Bulent Ecevit University, Zonguldak 67100, Turkey
2Department of Electrical and Electronics Engineering, Bulent Ecevit University, Zonguldak 67100, Turkey

Neural representation in F5: cross-decoding from observation to execution
Murat Kirtay!, Vassilis Papadourakis?, Vassilis Raos?, and Erhan Oztop'*

1Computer Science, Ozyegin University, Istanbul, Turkey
2Foundation for Research & Technology- Hellas (FORTH), and University of Crete Medial School, Heraklion,
Greece

Auditory Noise Influences Human Visual Perception of Ambiguous Information: Multi-modal in-
tegration during Bistable Perception

Woochul Choi*, Se-Bum Paik
Department of Bio and Brain Engineering, KAIST, Daejeon 305-338, Republic of Korea

Local interaction in Rretinal ganglion ccell mosaics can seed generate a consistent spatial peri-
odicity of in cortical orientation functional maps

Jaeson Jang*, Se-Bum Paik

Department of Bio and Brain engineering, KAIST, Daejeon, 305-701, Republic of Korea,

How bifurcations affect functional connectivity in finite-size neural networks
Anna Cattani*, Diego Fasoli, and Stefano Panzeri

Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tec-
nologia, Rovereto, Italy

Canonical correlations reveal co-variability between spike trains and local field potentials in area
MT

Jacob Yates!, Evan Archer?, Alexander C. Huk?, and || Memming Park3*

1Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA

2Depar'[ment of Statistics and Grossman Center for the Statistics of Mind, Columbia University, New York, NY
10027, USA

3Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
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Local structure supports learning of deterministic behavior in recurrent neural networks
Jonathan Binas*, Giacomo Indiveri, and Michael Pfeiffer

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

Approximate nonlinear filtering with a recurrent neural network
Anna Kutschireiter'*, Simone C Surace!?, Henning Sprekeler?, and Jean-Pascal Pfister!

Hnstitute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
2Department of Physiology, University of Bern, 3012 Bern, Switzerland
3Bernstein Center for Computational Neuroscience, Technical University Berlin, 10587 Berlin, Germany

The role of microcircuits in the pre-frontal cortex in detecting and encoding temporally patterned
information

Constantinos Melachrinos*, Athanasia Papoutsi, and Panayiota Poirazi
IMBB, FORTH, Heraklion, 70013, Greece

Multiplexed coding through synchronous and asynchronous spiking
Milad Lankarany!?*, Steven A Prescott!?

INeurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
2Department of Physiology and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto,
ON, Canada

Partial Information Decomposition as a Unified Approach to the Characterization and Design of
Neural Goal Functions

Michael Wibral'2*, William A. Phillips®, Joseph T. Lizier*, and Viola Priesemann®8

IMEG Unit, Brain Imaging Center, Goethe University, Frankfurt 60528, Germany

2Ernst Striingmann Institute for Neuroscience, Frankfurt 60528, Germany

3School of Natural Sciences, University of Stirling, Stirling FK9 4LA,UK

4School of Civil Engineering, The University of Sydney, NSW 2006, Australia

5Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, 37077 Géttingen,
Germany

5Bernstein Center for Computational Neuroscience, 37077 Géttingen, Germany

Cooperation/supervision of a habit by a cognitive strategy in a goal-directed navigational
paradigm

Souheil Hanoune*, Jean Paul Banquet, Philippe Gaussier, and Mathias Quoy

EIS Lab, University of Cergy-Pontoise, ENSEA — CNRS, France

A Minimum-Error, Energy-Constrained Neural Encoder Predicts an Instantaneous Spike-Rate
code

Erik Johnson®?3* Douglas Jones>?3# and Rama Ratnam?34

'Department of Electrical & Computer Engineering, University of lllinois, Urbana, IL 61801, USA
2Beckman Institute for Advanced Science and Technology, University of lllinois, Urbana, IL, 61801, USA
3Coordinated Science Laboratory, University of lllinois, Urbana, IL, 61801, USA

4Advanced Digital Sciences Center, lllinois at Singapore Pte. Ltd., Singapore
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P202 Regular and irregular stimuli result in changes in mice eye movement and cerebellar nuclei
neuron model behavior

Tiina Manninen®2*, Barbara Nguyen-Vu?, and Jennifer Raymond?

!Department of Signal Processing, Tampere University of Technology, Tampere, Finland
2Department of Neurobiology, Stanford School of Medicine, Stanford, CA 94305, USA

P203 Contributions from active dendritic conductances to the Local Field Potential
Torbjgrn Ness'*, Michiel Remme?, and Gaute T. Einevoll*®

1Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, Norway
%|nstitute for Theoretical Biology, Humboldt University Berlin, Berlin, Germany
3Dept. of Physics, University of Oslo, Oslo, Norway

P204 Cross-Cultural Differences in Visual Attention: A computational modelling study
Eirini Mavritsaki®?*, Panagiotis Rentzelas®

!Department of Psychology, Birmingham City University, Birmingham, B422SU, UK
2Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK

P205 Synaptic transmission of spike trains with arbitrary interspike intervals
Alexander Bird>23* Magnus Richardson?!

tWarwick Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
2School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
Swarwick Systems Biology DTC, University of Warwick, Coventry, CV4 7AL, UK
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Coarse-grained description of the spatio-temporal dynamics of network activity from experimen-
tally verified single-neuron models and connectivity

Francesco Fermani*, Magnus Richardson

Warwick Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK

On-line identification of the end of motor imageries based on the alpha rebound detection
A. Cecilia Lindig-Leon'23*, Laurent Bougrain®?3, and Sebastien Rimbert!23

Ynria, Villers-les-Nancy, F-54600, France
2Université de Lorraine, LORIA, UMR 7503, Vandceuvre-l&és-Nancy, F-54500, France
3CNRS, LORIA, UMR 7503, Vandoeuvre-lés-Nancy, F-54500, France

Optimal signal detection with neuronal diversity: balancing the gullible and the prudent neurons
Leonardo L Gollo**, Mauro Copelli?, and James A. Roberts?

1systems Neuroscience Group, QIMR Berghofer, Brisbane, Queensland, QLD 4006, Australia
2Departmento de Fisica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil

A cortical multi-layered model and the properties of its internally-generated activity
Rodrigo Fo Pena, Renan Shimoura, and Antonio C Roque*
Departamento de Fisica, FFCLRP, Universidade de S&o Paulo, Ribeirdo Preto, SP, 14040-901, Brazil

Effect of synaptic plasticity on functional connectivity and global activity of a neocortical net-
work model

Renan Shimoura, Rodrigo Fo Pena, and Antonio C Roque*
Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, Ribeirdo Preto, SP, 14040-901, Brazil

Dynamics of competition between coupled spiking networks in the balanced state
Fereshteh Lagzi>?*, Stefan Rotter’?2

!Bernstein Center Freiburg, Freiburg, Germany
2Faculty of Biology, University of Freiburg, Germany

The formation of habits in the neocortex under the implicit supervision of the basal ganglia
Meropi Topalidou'?3, Daisuke Kase?*, Thomas Boraud?, and Nicolas Rougier®?3*

1INRIA Bordeaux Sud-Ouest, Bordeaux, France

2Université de Bordeaux, CNRS UMR 5293, IMN, France

3LaBRI, Université de Bordeaux, IPB, CNRS, UMR 5800, Talence, France
“4Laboratoire Franco-Israélien de Neurosciences, CNRS Bordeaux, France

A realistic model of pitch explains the N100m morphology evoked by dyads
Alejandro Tabas®*, Emili Balaguer-Ballester’?, and André Rupp?®

YFaculty of Science and Technology, Bournemouth University, Bournemouth, England, UK
2Bernstein Center for Computational Neuroscience, Heidelberg-Mannheim, Baden-Wiirttemberg, Germany
3Heidelberg University, Baden-Wiirttemberg, Germany
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The Delayed Response Network: Towards a single layer universal neural network approximator
and delay-based learning

Martin Dinov!*, Elias Rut?

!Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, W2 ONN, UK
2Vienna University of Technology, Austria

Extracellular potassium concentration defines neuronal bursting properties
Yaroslav Molkov'*, Bartholomew Bacak?, Joshua Segaran?, and llya Rybak?

1Department of Mathematical Sciences, Indiana University - Purdue University, Indianapolis, IN 46202, USA
2Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19123, USA
3Carmel High School, Carmel, IN 46032, USA

The suppression curve as a new representation of the premature EEG maturation

Ninah Koolen'2*, Anneleen Dereymaeker?, Katrien Jansen?, Jan Vervisch?, Vladimir Matic'?, Maarten
de Vos*®, Gunnar Naulaers®, and Sabine van Huffel'?

Division STADIUS, Department of Electrical Engineering (ESAT), University of Leuven, Leuven, Belgium
2iMinds-KU Leuven Medical IT Department, Leuven, Belgium

®Department of Development and Regeneration, University of Leuven, Leuven, Belgium

“Department of Psychology, University of Oldenburg, Oldenburg, Germany

SInstitute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK

Multi-scale detection of rate and variance changes in neuronal spike trains
Stefan Albert!, Michael Messer!, Brian Rummell?, Torfi Sigurdsson?, and Gaby Schneider!*

nstitute of Mathematics, Goethe-University, Frankfurt (Main), Germany
2|nstitute of Neurophysiology, Goethe-University, Frankfurt (Main), Germany

Joint pausiness in parallel spike trains
Matthias Gartner®*, Sevil Duvarci?, Jochen Roeper?, and Gaby Schneider*

Ynstitute for Mathematics, Goethe-University, Frankfurt, Germany
2Neuroscience Center, Institute of Neurophysiology, Goethe-University, Frankfurt, Germany

Temperature-induced changes of spike timing precision and network synchronisation
Jan-Hendrik Schleimer?*, Janina Hesse'?, and Susanne Schreiber®?

Linstitute for Theoretical Biology, Institute for Biology, Humboldt University, Berlin, Germany
2Bernstein Centre for Computational Neuroscience, Berlin, Germany

Dendritic distribution of synaptic input creates a trade-off between input selectivity and flexibil-
ity
Michiel Remme*, Susanne Schreiber

Institute for Theoretical Biology, Humboldt University, Berlin, 10115, Germany
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Self-organization of information processing in developing neuronal networks

Viola Priesemann®?*, Joseph T. Lizier?, Michael Wibral*, Et Bullmore®®7, O Paulsen®, P Charlesworth?®,
and Ms Schroter®

!Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Gottingen, Germany
2Bernstein Center for Computational Neuroscience, Géttingen, Germany

3School of Civil Engineering, University of Sydney, Australia

4MEG Unit, Brain Imaging Center, Goethe University, Frankfurt am Main, Germany

5Behavioural & Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge CB2
3EB, UK

SCambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5HH, UK

"GlaxoSmithKline, Immuno Psychiatry, Alternative Discovery and Development, Stevenage SG1 2NY, UK
8Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory,
Downing Street, Cambridge CB2 3EG, UK

Markov Stability partitioning shows spectrally dependent community structure amongst thala-
mocortical neural ensembles

Christian David Martin*, Silvia C Ardila-Jimenez, and Simon R Schultz

Centre for Neurotechnology & Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK

A robust model of sensory tuning using dendritic non-linearities
Romain Caze*, Sarah Jarvis, and Simon R Schultz

Centre for Neurotechnology & Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK

An Information Theoretic measure of cross-frequency coupling
Silvia C Ardila-Jimenez*, Jiaying Tang, and Simon R Schultz

Centre for Neurotechnology & Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK

Looking at the Role of Direct and Indirect Pathways in Basal Ganglia Networks at Different Levels
Rahmi Elibol*, Neslihan Serap Sengor

Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey

— Withdrawn —

Curvature of dendritic nonlinearities modulates higher-order spiking correlations
Alex Cayco Gajic'*, Joel Zylberberg?, and Eric Shea-Brown?

!Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
2Department of Applied Mathematics, University of Washington, Seattle, WA, 98195, USA

Large-scale Quantitative Analysis of Neurons via Morphological Structures by Fast Automati-
cally Structural Tracing Algorithm (FAST)

Nan-Yow Chen'*, Kuan-Peng Chen?, Chi-Tin Shih?, Guan-Wei He?, Ting-Yuan Wang?*, Yu-Tai Ching?,
and Ann-Shyn Chiang*

!National Center for High-Performance Computing, Hsinchu 30076, Taiwan, R.O.C.

2Department of Physics, Tunghai University, Taichung 40704, Taiwan, R.O.C.

3Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C.
4Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.
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Symmetries constrain the transition to heterogeneous chaos in balanced networks
Andrea Barreiro'*, J. Nathan Kutz?, and Eli Shlizerman?

!Department of Mathematics, Southern Methodist University, Dallas, TX, 75275, USA
2Department of Applied Mathematics, University of Washington, Seattle, WA, 98195, USA

Predicting surgical outcome in intractable epilepsy using a computational model of seizure ini-
tiation

Nishant Sinha, Justin Dauwels*

School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore

EEG slow-wave mediates the fragmentation and coupling of cortical networks in propofol-
induced general anesthesia

Kaier Wang?', Moira Steyn-Ross?, D. Alistair Steyn-Ross'*, Marcus Wilson!, and Jamie Sleigh?

1School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
2Waikato Clinical School, The University of Auckland, Waikato Hospital, Hamilton, 3240, New Zealand

Thalamo-cortical mechanisms of the observed specific changes in frontal and occipital EEG
rhythms during propofol-induced sedation

Meysam Hashemi*, Axel Hutt!, and Jamie Sleigh?

1INRIA CR Nancy - Grand Est, Villers-les-Nancy, France
2Depar'[ment of Anaesthetics, Waikato Hospital, Hamilton, New Zealand

Description and removal of background activity in EEG power spectra under general anesthesia
using the Lorentzian curve

Mariia Fedotenkoval?3*, Axel Hutt>23, and Jamie Sleigh*

1CNRS, Loria, UMR n° 7503, Vandceuvre-lés-Nancy, F-54500, France

°’NEUROSYS team, Inria, Villers-les-Nancy, F-54600, France

3Université de Lorraine, Loria, UMR n° 7503, Vandceuvre-lés-Nancy, F-54500, France

“Department of Anesthesia, Waikato Clinical School of the University of Auckland, Waikato Hospital, Hamilton
3206, New Zealand

Functional requirements for homeostatic inhibitory plasticity in recurrent networks
Owen Mackwood®?*, Henning Sprekeler!?

Technische Universitat Berlin, 10587 Berlin, Germany
2Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany

Structural plasticity and associative memory in balanced neural networks with spike-time de-
pendent inhibitory plasticity.

Ankur Sinha*, Neil Davey, Roderick Adams, and Volker Steuber
Science and Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9AB, UK

Using transfer entropy to study synaptic integration in Purkinje cells
Kirsty Kidd*, Neil Davey, Daniel Polani, James M Bower, and Volker Steuber

School of Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK



pP237

P238

P239

P240

P241

pP242

P243

P244

Animat control by spiking neural networks evolved with a genetic algorithm
Borys Wrébel'?*, Ahmed Abdelmotaleb®3, Neil Davey?, and Volker Steuber®

'Evolutionary Systems Group, Adam Mickiewicz University, Poznan, Poland
2gystems Modeling Group, IOPAN, Sopot, Poland
3Biocomputation Research Group, University of Hertfordshire, Hatfield, UK

Evolving small spiking neural networks to work as state machines for temporal pattern recogni-
tion

Borys Wrobell2*, Anmed Abdelmotaleb® 3, Neil Davey®, and Volker Steuber?

!Evolutionary Systems Group, Adam Mickiewicz University, Poznan, Poland
2gystems Modeling Group, IOPAN, Sopot, Poland
3Biocomputation Research Group, University of Hertfordshire, Hatfield, UK

Identifying and tracking simulated synaptic inputs from neuronal firing: insights from in vitro
experiments

Maxim Volgushev?, Vladimir llint, and lan Stevenson®2*

!Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
2Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA

Neural representation of a spatial odor memory in the honeybee mushroom body
Martin Paul Nawrot'2*, Tiziano d’Albis, Randolf Menzel®, and Martin Strube-Bloss*

!Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany

2Computational Systems Neuroscience, Department of Biology, University of Cologne, Cologne, Germany
3Institute of Biology — Neurobiology, Freie Universitat Berlin, Berlin, Germany

4Department of Behavioral Physiology & Sociobiology, Biocenter, University of Wiirzburg, Wiirzburg, Germany

The effect of synchronized pauses on the coding strategies of cerebellar nuclear neurons: A
modeling study

Shyam Kumar®2*, Benjamin Torben-Nielsen?, and Erik de Schutter!?

!Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0895,
Japan
2Department of Theoretical Neurobiology and Neuroengineering, University of Antwerp, Wilrijk, Belgium 2610

Modeling of seizure transitions with ion concentration dynamics
Damiano Gentiletti'*, Marco de Curtis?, Vadym Gnatkovski?, and Piotr Suffczynskit

lDepartment of Experimental Physics, University of Warsaw, Warsaw, Poland, 02-093
2Fondazione Istituto Neurologico Carlo Besta, Milan, Italy, 20133

Lateral Inhibition as the Organizer of the Bottom-Up Attentional Modulation in the Primary Visual
Cortex

Elzbieta Gajewska-Dendek!*, Andrzej Wrébel?, and Piotr Suffczynskit

!Department of Biomedical Physics, Institute of Experimental Physics, University of Warsaw, Warsaw, 02-093
Poland
2Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093 Poland

Computational interactions between decision and emotion
Nicoladie D Tam*

Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

119



P245

P246

P247

P248

P249

P250

P251

P252

P253

120

Differential temporal activation of oxy- and deoxy-hemodynamic signals in optical imaging using
functional near-infrared spectroscopy (fNIRS)

Nicoladie D Tam'*, George Zouridakis?

'Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
2Departments of Engineering Technology, Computer Science, and Electrical and Computer Engineering, University
of Houston, Houston, TX, 77204, USA

Mapping the smoking addiction using dynamic causal modelling at rest
Rongxiang Tang', Adeel Razi?, and Yi-Yuan Tang®*

!Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
2The Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK
®Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA

Brief mindfulness training alters causal brain connections in mTBI
Rongxiang Tang?, Yi-Yuan Tang?*

!Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
2Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA

— Withdrawn —

Surround suppression and normalization in a model of coupled balanced cortical networks with
short-term synaptic plasticity

Sara Konrad, Tatjana Tchumatchenko*

Theory of Neural Dynamics, Max-Planck Institute for Brain Research, Frankfurt, 60438, Germany

Effect of power-law ionic conductances in the Hodgkin and Huxley model
Fidel Santamaria*, Wondimu Teka

UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA

Estimation of the synaptic conductance in a McKean-model neuron
Antoni Guillamon?, Rafel Prohens?!, Antonio E. Teruel!, and Catalina Vich Llompart!*

1Dept. of Mathematics and Computer Science, Universitat de les llles Balears, 07122, Palma, Spain
2Dept. of Applied Mathematics I, EPSEB, Universitat Politécnica de Catalunya, 08028 Barcelona

Induction and consolidation of calcium-based homo- and heterosyanptic potentiation and de-
pression

Yinyun Li*, Tomas Kulvicius, and Christian Tetzlaff

3rd Institute of Physics, Department of Computational Neuroscience, Georg-August-University Gottingen, Bernstein
Center for Computational Neuroscience, Géttingen, 37077, Germany

Interaction between memories in an abstract mathematical model based on the Hebbian cell
assembly hypothesis

Juliane Herpich'*, Florentin Woergoetter2, and Christian Tetzlaff?

1Third Physical Institute - Biophysics, Georg-August-University, Géttingen, Germany
2Bernstein Center for Computational Neuroscience, Géttingen, Germany



P254

P255

P256

pP257

P258

P259

P260

P261

Towards a biological plausible model of the interaction of long-term memory and working mem-
ory

Timo Nachstedt!?*, Florentin Worgétter:2, and Christian Tetzlaff:2

Third Institute of Physics, Georg-August-Universitat, Géttingen, 37077, Germany
2Bernstein Center for Computational Neuroscience, Géttingen, 37077, Germany

Sparse Coding and Dictionary Learning for Spike Trains to Find Spatio-temporal Patterns
Taro Tezuka*

Faculty of Library, Information and Media Science, University of Tsukuba, Tsukuba, 305-0821, Japan

Extreme sensitivity of reservoir computing to small network disruptions
Philippe Vincent-Lamarre!*, Guillaume Lajoie??, and Jean-Philippe Thivierge!

1School of Psychology and Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario KIN 6N5, Canada
2UW Institute for Neuroengineering, University of Washington, Seattle, Washington, US
3Max Planck Institute (DS) and Bernstein Center for Computational Neuroscience, Géttingen, Germany

Role of Na+ and Ca2+ currents in computational model of in-vitro sigh generation
Natalia Toporikoval*, Muriel Thoby-Brisson?

!Biology Department and Neuroscience Program, Washington and Lee University, Lexington, VA, 24450, USA
?Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Université de Bordeaux, 33076
Bordeaux, France

Fast and accurate representations of stochastic ion channel fluctuations

David F Anderson?, Bard Ermentrout?, David D Friel®, Roberto F Galan®, Benjamin Lindner*®, Shusen
Pub, Deena R Schmidt’, and Peter J Thomas®*

lDepartment of Mathematics, University of Wisconsin, Madison, WI 53706, USA

2Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

3Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA

“Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany

SDepartment of Physics, Humboldt University, 12489 Berlin, Germany

6Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland,
OH 44106, USA

"Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA

Mechanisms for Synchronized Burst Firing in Pyramidal Cells using Oscillatory Inhibition: A
Model for Attentional Control

Caroline Fischer*, Paul Tiesinga, and Marije Ter Wal

Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, 6525 AJ, Ni-
jmegen, The Netherlands

Alpha phase modulates the effectiveness and directionality of cortical communication
Silvan Quax*, Paul Tiesinga

Neuroinformatics department, Radboud University, Nijmegen, Netherlands

Analysis of replacing DNase-seq data with histone marks in computational dimer prediction
Victor Osamor?*, Jerzy Tiuryn?

!Department of Computer and Information Sciences, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
2|nstitute of Informatics, University of Warsaw, Ul. Stefana Banacha 2, 02-097, Warsaw, Poland

121



P262

P263

P264

P265

P266

P267

P268

P269

P270

122

Fitness and neural complexity of animats exposed to environmental change
Larissa Albantakis*, Giulio Tononi

Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, 53719, USA

Stochastic mean-field formulation of the dynamics of diluted neural networks
David Angulo-Garcia*, Alessandro Torcini

Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche (CNR), via Madonna del Piano 10, Sesto
Fiorentino, Italy I-50019

Two different mechanisms alternate during cortical synchronized states
Erin Munro'*, Tansi Khodai?, Shuzo Sakata?, and Taro Toyoizumi'

!Brain Science Institute, RIKEN, Wakoshi, 351-0198, Japan
2Centre for Neuroscience, University of Strathclyde, Glasgow, G4 ORE, UK

Self-organization of complex cortex-like wiring in a spiking neural network model
Daniel Miner*, Jochen Triesch

Department of Neuroscience, Frankfurt Institute for Advanced Studies, Frankfurt am Main, Hessen 60486, Ger-
many

Key features of neural variability emerge from self-organized sequence learning in a determinis-
tic neural network

Christoph Hartmann'*, Andreea Lazar?, and Jochen Triesch?!

YFrankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
2Ernst-Striingmann Institute (ESI), Frankfurt, Germany

Modulation of hippocampal gamma oscillations by acetylcholine: insights from mathematical
and in vitro optogenetic models

Ruth Betterton'*, Jack Mellor!, and Krasimira Tsaneva-Atanasova?

1School of Physiology and Pharmacology, University of Bristol, BS8 1TD, UK
2College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, UK

A Spatiotemporal Model of Spine Calcium Dynamics in the Hippocampus
Thom Griffith*, Jack Mellor?, and Krasimira Tsaneva-Atanasova®

1Depar'[ment of Engineering Maths, University of Bristol, Bristol, UK
23chool of Physiology and Pharmacology, University of Bristol, Bristol, UK
3Department of Mathematics, University of Exeter, Exeter, UK

Transient Synchrony in Delayed Coupled Neuronal Networks
Zahra Ghasemi Esfahani'*, Alireza Valizadeh?!?

!Department of physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
2School of Cognitive Sciences, IPM, Niavaran, Tehran, Iran

Stabilizing synchrony with heterogeneity
Ehsan Bolhasanil?*, Alireza Valizadeh!?

1Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
2School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Niavaran, Tehran, Iran



P271

p272

P273

P274

P275

P276

P277

P278

Novel modes in a Wilson-Cowan network
Jeremy Neuman®*, Jack Cowan?, and Wim van Drongelen?

1Dept. of Physics, University of Chicago, Chicago, IL 60637, USA
2Dept. of Mathematics, University of Chicago, Chicago, IL 60637, USA
3Dept. of Pediatrics, University of Chicago, Chicago, IL 60637, USA

Proof of concept: A spatial modular small-world self-organises by adaptive rewiring.
Nick Jarman®2*, Chris Trengove?!, Erik Steur?, lvan Tyukin®2, and Cees van Leeuwen?

lPerceptual Dynamics Laboratory, University of Leuven, Leuven, Flemish Brabant, B3000, Belgium
2Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
3Saint-Petersburg State Electrotechnical University, Saint-Petersburg, Saint Petersburg 197376, Russia

Lateral connections synchronize population activity in a spiking neural network model of mid-
brain superior colliculus

Bahadir Kasap*, John van Opstal

Radboud University Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour; Dept. Bio-
physics, HG00.800

Channel-specific input/output transformations arising from the interaction between dynamic
synapses and subthreshold oscillations

Roberto Latorre?, Joaquin J. Torres?, and Pablo Varona®*

!Dpto. de Ingenieria Informatica, Escuela Politécnica Superior, Universidad Auténoma de Madrid, 28049 Madrid,
Spain

2Dpto. de Electromagnetismo y Fisica de la Materia, and Institute Carlos | for Theoretical and Computational
Physics, University of Granada, Granada, Spain

Regularization of a half-center oscillator network by closed-loop control
Irene Elices*, Pablo Varona

Grupo de Neurocomputacion Bioldgica, Departamento de Ingenieria Informética, Escuela Politécnica Superior,
Universidad Autonoma de Madrid, Madrid, 28049, Spain

Two-channel models of medial and superior olive based on psychoacoustics
Jaroslav Bouse'*, Vaclav Vencovsky!?

!Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague,
162 27, Czech Republic
2Musical Acoustics Research Center, Academy of Performing Arts in Prague, Prague, 118 00, Czech Republic

A Self-Organizing Neural Network for Neuromuscular Control
Praveen Shankar®, Sharmila Venugopal?*

!Department of Mechanical and Aerospace Engineering, California State University Long Beach
2Department of Integrative Biology and Physiology, University of California Los Angeles

Developing and validating an isotrigon texture discrimination task using Amazon Mechanical
Turk

John Wg Seamons'*, Marconi S Barbosa?!, Jonathan Victor?, Dominique Coy*, and Ted Maddess?

1Eccles Institute for Neuroscience, John Curtin School of Medical Research, ANU, Canberra, ACT 0200, Australia
2Department of Neurology & Neuroscience, Weill Cornell Medical College, 1300 York Ave, New York 10021

123



P279

P280

pP281

P282

P283

P284

P285

P286

124

Neural model for multi-stability in visual action recognition
Martin Giese'*, Leonid Fedorov?, and Rufin Vogels?

!Department of Cognitive Neurology, Section Computational Sensomotorics, CIN & HIH, University Clinic Tibingen,
Germany
2|_aboratorium voor Neuro-en Psychofysiologie, KU Leuven, Belgium

Optimization of input parameters to a CN neuron model to simulate its activity during and be-
tween epileptic absence seizures

Alva Parimala’*, Lieke Kros?, Oscar Eelkmanrooda?, Chris de Zeeuw?, Roderick Adams?, Neil Davey?,
Freek Hoebeek?, and Volker Steuber®

!Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
2Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
3Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands

A spiking neuron network model for the delayed motion direction discrimination task
Liu-Tao Yu', Si Wu?*, and Da-Hui Wang'?

1School of Systems Science, Beijing Normal University, Beijing 100875, China
2State Key Laboratory of Cognitive Neuroscience & Learning, Beijing Normal University, Beijing 100875, China

Prediction of ion channel parameter differences between groups of young and aged pyramidal
neurons using multi-stage compartmental model optimization

Tim Rumbell**, Danel Draguljic?, Jennifer Luebke?, Patrick Hof!, and Christina M Weaver?

Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai,
New York, NY 10029

2Department of Mathematics, Franklin and Marshall College, Lancaster, PA, 17604

3Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118

What Must Come Down Goes Up - the Effect of Noise on Weights in Spike-Timing-Dependent
Plasticity

Michael Klein*, Angelo Cangelosi, and Thomas Wennekers

Centre of Robotics and Neural Systems. Plymouth University, PL4 8AA Plymouth, United Kingdom

A Hebbian Cell Assembly based neural field model for the remote associate task and creative
search

Ivana Kajic, Thomas Wennekers*

School of Computing and Mathematics, Plymouth University, Plymouth, Devon PL48AA, United Kingdom

Recurrent Networks Expect
Adam Ponzi*, Jeffery Wickens

Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa 904 0495, Japan

A novel method for spatial source localization using ECoG and SEEG recordings in human
epilepsy patients

Chaitanya Chintaluri*, Daniel K Wojcik

Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw - 02093, Poland



pP287

P288

P289

P290

P291

P292

P293

P294

P295

Stimulus discrimination and association with Hebbian cell assemblies
Johannes Maria Auth®?, Timo Nachstedt'?*, Christian Tetzlaff'?, and Florentin Worgdotter®2

1Third Institute of Physics, Georg-August-University, Gottingen, 37077, Germany
2Bernstein Center for Computational Neuroscience, Géttingen, 37077, Germany

Anticipative Tracking in Two-Dimensional Continuous Attractor Neural Networks
Yuanyuan Mit?, Yan Xia!, Qi Gao?, and Si Wu'*

!State Key Laboratory of Cognitive Neuroscience & Learning, Beijing Normal University, Beijing 100875, China
2Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel

— Withdrawn —

The effect of Delta9-tetrahydrocannabinol, Cannabidiol, Menthol and Propofol on 5-
Hydroxytryptamine type 3 Receptors—A Computational Approach

Andreas Schilbach*, Tatiana Prytkova, and Susan Keun-Hang Yang

Schmid College of Science and Technology, Chapman University, Orange CA, 92866, USA

More flexibility for code generation with GeNN v2.1
Thomas Nowotny*, James P. Turner, and Esin Yavuz

CCNR, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, UK

Mathematical modelling of ICAN-mediated persistent firing in hippocampal neurons
Francesco Giovannini'*, Motoharu Yoshida?, and Laure Buhry?!

1Neurosys Team, INRIA, LORIA UMR 7503, CNRS, Université de Lorraine, Villers-lés-Nancy, F-54600, France
2Faculty of Psychology, Mercator Research Group — Structure of Memory, Ruhr-University, Bochum, 44801, Ger-
many

Spatiotemporal dynamics in spiking simulations of superior colliculus fit via MCMC suggest
disinhibition responsible for superlinear summation

Richard Vealel*, Tadashi Isal2?, and Masatoshi Yoshidal2

!National Institute for Physiological Sciences, Okazaki, Japan
2SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan

Natural environment promotes deeper brain functional connectivity than built environment
Zheng Chen?, Yujia He?, and Yuguo Yu?*

!Department of Landscape Studies, College of Architecture and Urban Planning, Tongji University, Shanghai,
200092

°The State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, School of Life Sciences, Fudan
University, Shanghai, 200433

Axon Initial Segment potassium Channel Density in Cortical Neurons
Wen Zhang, Bogiang Fan, Ping Zheng, and Yuguo Yu*

The State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, School of Life Sciences, Fudan
University, Shanghai, 200433

125



P296

P297

P298

P299

P300

P301

P302

P303

126

Key factors dominating the neural coding preference to 1/f signal
Bogiang Fan*, Wen Zhang, Shanglin Zhou, and Yuguo Yu

School of Life Sciences, the State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan
University, Shanghai, 200433

Learning experience facilitates sparse coding of new odors in a large-scale olfactory bulb model
Shanglin Zhou!, Bogiang Fan!*, Michele Migliore?, and Yuguo Yu?!

School of Life Sciences, the State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan
University, Shanghai, 200433, China
2|nstitute of Biophysics, National Research Council, 90146 Palermo, Italy

Axon zippering in neuronal cell culture and its biophysical modeling
Daniel Smit23, Coralie Fouquet®, Frederic Pincet*, Alain Trembleau®, and Martin Zapotocky!2*

YInstitute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic

%nstitute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Czech Republic
3IBPS, Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, UPMC UM 119, Université Pierre et Marie
Curie, Paris, France

“Laboratoire de Physique Statistique, Ecole Normale Superieure, Paris, France

Computational estimation of calcium fluxes in isolated magnocellular neurons
Stepan Kortus®22, Govindan Dayanithi®#, and Martin Zapotocky2*

YInstitute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic

2Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Czech Republic
3Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic

4INSERM U710/EPHE, Université Montpellier 2, France

Functional identification of complex cells from spike times and the decoding of visual stimuli
Aurel A. Lazar*, Nikul H. Ukani, and Yiyin Zhou
Department of Electrical Engineering, Columbia University, New York, NY 10027, USA

Retina of the fruit fly eyes: A detailed simulation model
Aurel A. Lazar*, Konstantinos Psychas, Nikul H. Ukani, and Yiyin Zhou

Department of Electrical Engineering, Columbia University, New York, NY 10027, USA

Network heterogeneity and seizure generation
Sima Mofakham?*, Christian Fink?, Victoria Booth®, and Michal Zochowski'*°

!Biophysics program, University of Michigan, Ann Arbor, MI, USA

2Department of Physics & Astronomy and Neuroscience Program, Wesleyan University, Delaware, USA
3Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, USA
4Department of Physics, University of Michigan, Ann Arbor, MI, USA

5The R.B. Zajonc Institute for Social Studies, Stawki, Warsaw, Poland

The role of adaptation current in synchronously firing inhibitory neural networks with various
topologies

Scott Rich*, Victoria Booth?!, and Michal Zochowski2

1Department of Mathematics, University of Michigan, Ann Arbor, Ml 48104, USA
2Department of Applied Physics, University of Michigan, Ann Arbor, MI 48104, USA



P304

P305

Modeling the formation and dynamics of cortical waves induced by cholinergic modulation.
James Roach'*, Eshel Ben-Jacob?3, Leonard Sander*, and Michal Zochowski®*5

!Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, U.S.A

23chool of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 69978, Israel

3Center for Theoretical Biological Physics, and Department of Biochemistry and Cell Biology, Rice University, Hous-
ton, TX, 77005, USA

4Department of Physics & Center for Studies of Complex Systems, University of Michigan, Ann Arbor, MI, 48109,
USA

5Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA

Modelling impairment of evoked gamma range oscillations in schizophrenia
Christoph Metzner'*, Achim Schweikard?, and Bartosz Zurowski?

nstitute for Robotics and Cognitive Systems, University of Luebeck, 23538 Luebeck, Germany
2Department of Psychiatry, University of Luebeck, Schleswig-Holstein, 23538 Luebeck, Germany

127



128



Appendix



130



Notes

131



132



133



134



135



136



Page Index

A
Abbas,James ... 102
Abdelmotaleb, Ahmed ......................... 119
Abouzeid, Aushra.................cooiiiiat. 102
Abraham, Wickliffe C. ............... .o i 87
Acimovic, Jugoslava......................s. 24, 53
Adams, Roderick .................... ..., 118, 124
Aertsen, Ad. ... 105
Aggarwal, AnU ... 87
Ahissar, Merav...............ciiiii .. 25, 58
AN, Sora. ... 106
AhN, SUNGWOO . ... 87
AKin, Myles ... 99
Albantakis, Larissa............ccovviiiiiinnnn.. 122
Albert, Stefan............ ..o i 116
Amarasingham, Asohan......................... 87
Amin, Hayder ..., 88, 110
Anderson,DavidF....................co it 121
Andreassen,Ole..............coeiiiinnn.. 93, 96
Angulo-Garcia, David ...................... 89, 122
Anwar, Haroon................ ..., 110
Apicella, llenia ... 88
Archer,BEvan.............. .. i i 112
Ardila-Jimenez, SilviaC........................ 117
Aschauer, Dominik. .........cooiiiiiii i 102
Asokan, Meenakshi.............ccooeviiiiinn.... 91
Aspart, Florian..............cooooiiiiin s 111
Augustin, Moritz ... 111
Auth, JohannesMaria.......................... 125
B
Babichev, Andrey .............. ..o 93
Bacak, Bartholomew........................... 116
Bahn,Sabine ................coiiiiiiii 90
Bain, Peter. ... 88
Bal, Thierry ... e 95
Balague,Marta ...............cooiiiiiiii 95
Balaguer-Ballester, Emili ............... 29, 83, 115
Bamber,Jon............ i 100
Banks, RobertW..............ccoiiiiiiii. .. 89
Banquet,JeanPaul............................ 113
Barardi, Alessandro..................c.coiinn.. 97
Barbosa, Joao ... 88
Barbosa, Marconi S....................... 107, 123
Bardakjian, Berj. ... 88
Barnes, Carol............cciiiiii i 88
Barnett, William .............. ... .o, 93
Barreiro, Andrea..................oonn 111, 118
Bazhenov, Maxim................coiiiiiiiinn... 88
Beim Graben, Peter...............cciiiinn... 101
Ben-Jacob, Eshel................ ... ...l 127
Benichoux, Victor ...t 90
Benna, Marcus K............... .., 24,43
Benuskova, Lubica...............oooiiiii. 87

137

Berdondini, Luca.................... ... 88, 110
Berg, Eva........co 94
Berke, JoshuaDamien...............ccovvvvinnn. 89
Besserve, Michel................. ..o L. 89
Betkiewicz, Rinaldo............................ 110
Bettella, Francesco..............ccoviiiiiiiinnn. 93
Betterton, Ruth .............. ... ... il 122
Bewick, GUY S ...t 89
Bibichkov, Dmitry ........... ... 102
Biehl, Michael............... ... i, 103
Bill, Johannes ........................... 24,47, 95
Binas,Jonathan ............................... 113
Bird, Alexander .................... ... .. 92,114
Blackman, Rachael ............................ 110
Blackwell, Kim Avrama...................... 22,38
Bohnenkamp, Lisa............ccoiiiiiinat. 96
Bolhasani,Ehsan.............................. 122
Bonon, Jacopo. ... e 103
Booth, Victoria............... ..o i 126
Boraud, Thomas.............ccciiiiiiiiin.n, 115
Borisyuk, Roman............................ 88, 89
Bos,Hannah................ ..., 100
Bougrain, Laurent.............. .o 115
Bouse, Jaroslav..............oooi i 123
Bower,JamesM........... ... ... e 118
Bozanic, Nebojsa......................... 104, 110
Braune, Christian.................ccooiiinn... 104
Breakspear, Michael ............................ 89
Breitwieser, Oliver. ... ... 95
Brette, Romain........ 22,24, 28, 36, 54, 77, 89, 90
Broek,Jantine AC ...t 90
Bubna-Litic, Anton ............... ..o 107
Buchin, Anatoly ............... ... .ol 87
Buckwar, Evelyn ......... ... o 90
Blschges, Ansgar. . ........oooiiiiiiiiiaen.. 94
Buhry,Laure.............cociiiiii i 125
Bullmore, Et ... 117
Buonviso, Nathalie .......................... 26, 45
Bures, Zbynek ... 108
Burke, Sara..........coiiiiiiiii e 88
Burkitt, Anthony N...................... 90, 98, 102
Butts, Daniel ................ciiiiiii i 25, 55
Butz-Ostendorf, Markus ..................... 29, 82
Buzsaki, GYOrgy . ......voviiiiiiiiiiiiiiian 87
Bytschok, llja.............cooiiiintn, 24, 47,95
C
Cafaro, JoNn. ...t 25, 62
Calabrese,Ronald .............................. 93
Calim, Ali. ... 112
Campbell, Benjamin.................coooiiiiin. 88
Canals, Santiago ............oovvieiiieinnnn, 109
Canavier,Carmen..........coveevieeiinnenn.. 28,79
Cangelosi, Angelo ..., 124



Cantarelli, Matteo .. ...............coovet. .. 98, 105

Capogrosso, Marco.........coov v 109
Capone, Cristiano .........coovviviiiiiniinnnn 108
Carelli,PedroV..........ccooiiiiiiii ... 109
Carrillo-Medina, JoSé .............ccovviinnnn.. 106
Cattani, ANNa...........ccooviiiiiiiiiiien... 112
Cayco Gajic, AleX . ...t 117
Caze,Romain.................cooevviinn... 92,117
Cessac,Bruno............. ... 104
Chadwick, AnQuUS.........covviiii e 26, 64
Chafee, Matthew................. ...t 110
Chaillet, Antoine ... 90
Chakravarthy, Srinivasa ..................... 90, 91
Chambers, Jordan .................ccoevvvinn... 98
Chan, C. K. .o 91
Chance, Frances...........cooi i i, 88
Chandler,ScottH ..., 91
Chang,Bernard..................cciiiiinan.. 91
Charlesworth, P ........... i 117
Chaud,VitorM........ ... 104
Chen,Kuan-Peng.............cooiiiiiiiinn... 117
Chen, Nan-Yow . .........ccoiiiiiiiiiiiiin e 117
Chen,Zheng...........oiiiiiiii i 125
Chhabria, Karishma......................... 90, 91
Chiang, Ann-Shyn ........... ..., 117
Chiel, Hillel. ... 91
Ching, Yu-Tai ... 117
Chintaluri, Chaitanya........................... 124
Chizhov, Anton...........cciiiiiii i 87
Cho,Kei ..o 92
Choi,John. ...t 103
Choi,Woochul................ .ot 112
Chowdhury, Samir .....................ooii.l 93
Christoph, Michel.................... .. ..., 28, 80
Chuang, Chaochun ..................... ..., 92
Ciura, Sorana. ..ot 110
Clopath, Claudia................coovient. 92, 103
Coca,Daniel...........ccoiiiiiiii 93
Cohen,Neal ............ciiii i 92
Compte, Alberto .........coovviii i 88
Constantinou, Maria.................coevnnn.. 109
Cook, Mark ..o a0
Cook, Matthew. ..........ccciviiiiiii i 101
Cope, AlEX . .o 108
Copelli, Mauro.............covivvinnnn... 109, 115
Courtiol, Emmanuelle ....................... 26, 45
Cowan,Jack ...............ccovinnn.. 23,41, 123
Coy, Dominique. ... 123
Crone,Nathan E. .............. ...t 97
Crotty, Patrick . ......... ... 92
CUl, XUE-MEI .\ 99
CUlL, YUWEI . e e 25,55
Cuntz,Hermann......................... 28, 75, 92
Currie, Michael ............... ..o iiiii... 105
Curto, Carina ......ovviiiii e 93
Cymbalyuk, Gennady .................cooiinn.. 93

138

D
d’Albis, Tiziano ... 119
Dabacan, Adriana ....................civu. .. 110
Dabaghian, Yuri..............ccooiiiiii i 93
Dahmen,David ..........ccoiiiiiiiiii i 96
Dale, Anders. ... 93
Dasgupta, Sakyasingha ..................... 24,50
Dashevskiy, Tatiana.............ccovvvviienn... 93
Daun-Gruhn, Silvia...........ccoviiiiiii .. 94
Dauwels, Justin. ..., 118
Davey, Neil ...................ooi 118, 119, 124
David, Frangois............ccovvviiiinnnenn.. 26, 45
David, Stephen ... 94
Davis, Oliver ... 89
Dayanithi, Govindan ........................... 126
de Calbiac, Hortense ..............ccovvinn... 110
de Candia, Antonio. ............ciiiiiiiinn... 88
de Cheveigné, Alain........................ 25, 57
de Curtis, MarCo.........covviiiiineiiinn.. 119
de Gruyter, Martin HM ......................... 90
de Schutter, Erik ................. oL 94, 119
de Simone, Giada.............ccoviiiiiiii .. 109
deVos,Maarten...........cooeviiiiinnnnnn.. 116
de Weerd, Peter.............ccoeviiiiinn... 25, 56
de Wiljes,Oltman ............ ...t 103
deZeeuw, Chris.........cooiiiiiiiiian.. 124
deZeeuw, Chris|..........cooiiiiiiii .. 90
Deco,Gustavo...........ccovvvvveina.... 24,42, 95
Deger, MOMtz . ..o 98
Deleuze, Charlotte ............cvvviiiiinnn. .. 95
Delgiudice,Paolo....................cooia.L. 108
Demb, Jonathan............................. 25,55
Dempere-Marco, Laura...................ooat 95
Deng, XiNyi . ....oooieiiiii i 96
Dereymaeker, Anneleen ....................... 116
Destexhe, Alain ..., .. 95
Detorakis, GEOrgios .. ......cvvvrineiiiaienenn. 920
Devor, ANNa. ... i 93
Di Marco, Stefano.......................... 88, 110
Diba, Kamran.............cccoiiiiiiiiinn... 87
Diehl,PeterU. ... 101
Diesmann, Markus.............. 24, 46, 95, 96, 100
Dimitrov, Alexander .................coviiiii, 94
Dimitrov, Alexander G ....................... 27,70
Dinov, Martin.............coiiiiiinnnn.. 95, 116
Djurfeldt, Mikael ............................. 22,39
Djurovic, Srdjan . ... 93
Doya, Kenji......cooeii 96
Draguljic, Danel.................coooiiiiin... 124
Duarte,Renato............ccovviiiiia... 109
Dura-Bernal, Salvador.................... 103, 107
Duvarci, Sevil ... 116
Dzakpasu, Rhonda.............................. 99
E
Echeveste, Rodrigo ......................... 96, 99
Eckmann,Samuel................... ... ... 96
Eden, Uri .. ..ot e 96



Eelkmanrooda, Oscar. ..........ooevuvvunnnnn. 124

Einevoll, Gaute T................ 21, 34,93, 96, 114
Elibol, Rahmi........... ... ... ... 117
Elices, Irene ... 123
Eppler,Bastian ....................ooiiiiaL 102
Eppler, Martin Jochen....................... 22,39
Ermentrout,Bard ................ ... ... .. 121
Ernst, UdO A . ... e 96
Evans, Benjamin............. ... ... 111
Evans,Rebekah....................... .. ... 103
F
Fairhall, Adrienne ...................cooe. 23,41
Fan,Bogiang .........ccovvvineinninnnn... 125, 126
Faraji, Mohammadjavad......................... 97
Farkhoo, Farzad............................. 22,37
Farkhooi, Farzad............................... 110
Farokhniaee, Amirali........................... 105
Fasoli, Diego.......cvvvvii i 112
Fauth, Michael .............................. 25,61
Fedorov, Leonid...............ccovieiiiat, 98, 124
Fedotenkova, Mariia ........................... 118
Fenton, Andre A............ ... 103
Fermani, Francesco............ccovvviiinnn s, 115
Fink, Christian . ... 126
Fischer,Caroline.................coiii ... 121
Florescu, Dorian ... 93
Fontaine,Bertrand .......................oo.L. 97
Forsythe,lan............... ..ot 98
Fouquet, Coralie............ccovviiiiiiininn, 126
Fourcaud-Trocme, Nicolas................... 26, 45
Franaszczuk, Piotr J........... ...t 97
Francis, Joseph....................ol 103, 107
Frank, Loren............ ... 96
Frie, David D ... 121
Frohlich, Flavio ...t 101
Fukai, TomoKi..........ccooiiiiiii i 97
Fusi,Stefano.................. ... L 24,43
G
Gartner, Matthias ................. ... oL 116
Gajewska-Dendek, Elzbieta.................... 119
Galan,RobertoF.............. o i 121
Gao, Qi 125
Garcia-Ojalvo, Jordi ..., 97
Gastpar, Michael C.....................oo... 27,70
Gaussier, Philippe ... 113
Geng,Kunling ...t 108
Gentiletti, Damiano ............................ 119
George, Richard M. ..., 101
Georgopoulos, Apostolos P .................... 107
Gerstner, Wulfram ................... 26, 42, 97, 98
Ghasemi Esfahani, Zahra...................... 122
Ghazizadeh, Ali ... 98
Giese,Martin ..., 98, 124
Gigg,John. ... . 109
Gil, AMparo. ..o 99
Gill, Jeffrey. ..o 91
Gilson, Matthieu......................... 29, 81, 95

Giovannini, Francesco ...........cooevvviinnn... 125
Giugliano, Michele........................... 28,77
Glasauer, Stefan................. ... 107
Gleeson, Padraig................... 29, 84, 98, 105
Gnatkovski, Vadym ....................coel 119
Goetz,Lea............... 99
Goetze, FelixX. ... 91
Gollo, Leonardo L..................... 89, 109, 115
Gonzalo Cogno, Soledad ...................... 108
Goodman,Dan.................. 22,25, 36,57, 89
Grado,LoganL .......c.cooviiiiiiiiiii 98
Graham, Bruce. ........cooviiiiiiiii i 98
Grayden,DavidB ...................... 90, 98, 102
Griffith, Thom........... ... . ..o o L. 122
Grigorovsky, Vasily . ... 88
Groen,Martine R ... 99
Gros,Claudius ... 96, 99
Gruen, SONja. .. .o.vuei i 96
Grytskyy, DMytro ........coiiiiiiiiiann. 100
Guillamon, Antoni..........cooiiiiii i 120
GUO, YiXIN. i e e 99
Gurney,Kevin............ ... 27,69, 108
Gutierrez, Crhistan Mg.....................oooe 99
Gutkin, BOriS. ... 87, 105
H
Haasdijk, Elize D............cooiiiiiiiiiiat, 90
Hadjipapas, AVQiS . .......cooviiiiiiiinann. 25, 56
Hadrava, Michal............................ 99, 100
Hausser, Michael .................. ... ..o 99
Hagen, Espen................ccovinnt. 21, 34, 96
Halnes, Geir.........coviii it 93, 96
Han, SeungKee ..., 99
Handa, Takashi............... ..ot 97
Hanoune, Souheil................ ... L. 113
Harnack, Daniel..............cciiiiiin... 96
Harrington, Melissa ...................... ... 99
Hartmann, Christoph............... ... ...l 122
Hashemi, Meysam..................cooiiiinnn. 118
Hashemiyoon, Rowshanak .................. 28, 80
Hassannejad Nazir, Azadeh.................... 106
Haueisen, Jens ..............ccoviiinnnn.. 25, 59
Havela, Riikka ... 106
He,Guan-Wei ..........cocoiiiiiiiiii i, 117
He, Yujia. ... 125
Heikkinen,Hanna............................... 97
Helias, Moritz................... 22, 24,37, 46, 100
Hellgren Kotaleski, Jeanette ................... 100
Hennig, Matthias.............. ... ... ... ........ 100
Hepburn, lain.......... ... 94
Herpich, Juliane ..................... ... coe. 120
Herrmann, J. Michael .......................... 100
Hesse,Janina.............ccoviiiiiinnaninn. 116
Heydarieh, Seyyed Mohsen..................... 98
Hilgen, Gerrit ... 104
Hillen,Brian ... 102
Hines, Michael................ ... it 107
Hirata, Yutaka..............cooviiiii 100



Hlinka, Jaroslav......................o.o. .. 99, 100

Hoebeek, Freek............ccoo i, 124
Hof, Patrick ............ ... i 124
Hofmann, Ulrich ................ ... ... .. ... 101
Hokanson, Jim..............cccoiiiiiinn.. 105
Holt, Abbey ... 25, 44
Horecka, Kevin.............ccooiiiiiiiiinn... 92
Huberfeld, Gilles ... 87
Huk, Alexander C. ..., 112
Hummos, Ali ... 26, 63
Hunold, Alexander....................covv..t. 25, 59
Hutchison, R Matthew........................... 89
Hutt, Axel ...t 21, 33,101, 118
Hwang, Dong-UK. ...t 99
Hyttinen, Jari A K. ... 101
I
Ibbotson, Michael R............................. 98
Idili, Giovanni ... 105
Igarashi, Jun............. ..o 96
lleri, Ugur. ..o 112
llin, Vladimir ..........oo i 119
Inagaki, Keiichiro ......................ooiiet. 100
Indiveri, Giacomo................c.ovinnn. 101, 113
Intosalmi, Jukka ................. i 106
Isa, Tadashi............coiiiiii 125
Itskov, Vladimir............. ..o i, 101
J
Jacoby, NOFi.........cooov i 25, 58
Jaffe-Dax, Sagi........ccoovvviiiiiiiiinn. 25, 58
Jahed, Mehran............... ... ..o, 98
Jang,Jaeson......... .. 112
Jansen, Katrien............cooi it 116
Jaramillo-Avila, Uziel ........................... 101
Jarman, Nick ... 123
Jarvis,Sarah.......................... 92, 111, 117
Jedlicka, Peter ... 87
Jedynak, Maci€j.........ovviiiiiiiiiiiiieann 97
Jirsa, Viktor..................... 25, 26, 59, 66, 101
Jitsev, Jenia ... 109
Johnson, Erik. ... 113
Johnson, Matthew D ............................ 98
Jones,Douglas..................ccocie 113
Jordan,Jakob......... ... 95
Jun, Sangbeom............. ..., 106
Jung, Ranu ... 102
Juusola, Mikko. ... 102
Juusola, Mikko I............ .ot 28,72
K
Kabashi, Edor ..., 110
Kajic,Ivana...........ccooii i 124
Kameneva, Tatiana.................ccoven... 98, 102
Kamyshanska, Hanna ......................... 102
Kasap, Bahadir.................oooiiiiiat. 123
Kaschube, Matthias............................ 102
Kase, Daisuke ........ccoiiiii i 115
Kath,William .......... ... 102

140

Kay,Kenneth...............cciiiiiiiiiiin.. 96
Kay, LeslieM ..., 102
Keeley, Stephen ............ ...t 103
Keijzer, Fred ... i 103
Keller,Daniel...............coiiiiiiiiiiins. 96
Kempter,Richard .............................. 103
Kerr, CIiff C ..o 103, 107
Khalig, Zayd ... 103
Khayrulin, Sergey..........ccoiiiiiiiin, 105
Khodai, TanSi...........cooiiiiiiiii ... 122
Kidd, Kirsty . ... 118
Kim, Junhyeok................cooiiiiiiiiin, 104
Kim, Seunghwan ......................... 103, 104
Kim,Won Sup ...t 99
Kirtay, Murat . ... 112
Kitano, Katsunori .............ccoeviiiiinenn.. 103
Klatzmann, Ulysse.................ccooviini.. 103
Klein, Michael............... ... oo i, 124
Ko, Tae-WOOK. ...t 104
Kobayashi, Ryota......................... 103, 104
Kohn, André ...t 104
Konrad, Sara ...........coovviiiiiiineeinnn... 120
Koolen,Ninah ................coiiiiiiino .. 116
Kornprobst, Pierre ..., 104
Kortus, Stepan...........oooiiiiiii it 126
Korvasova, Karolina ..................cooiuis. 109
Kostal, Lubomir ........................ 27,70, 104
Kowalski, Jakub................... ... ... ... 106
Kretzberg, Jutta. ..., 104
Kreuz, Thomas..............ccvvvivnn... 104, 110
Krishnan, Giri ... 88
Kros, Lieke ... 124
Kruse,Rudolf.............. ..o, 104
Kueh, Daniel.........cccooiiiiiii i 93
Kuehn,Oliver.............cooiiiiiiiiii .. 104
Kulvicius, Tomas ....................... 24,50, 120
Kumar, Arvind ... 105
Kumar, Shyam...............cooiiiiiiiinn, 119
Kunze, Tim. ..o 25,59
Kurikawa, TomoKi ..o, 97
Kuriscak, Eduard ...............ccoiiiiinn... 108
Kutschireiter, Anna............ccooviiiiinnann.. 113
Kutz,J.Nathan....................ooiiiiia, 118
Kuznetsov, Alexey ............cccoiiiiiiina .. 105
L
Ladenbauer, Josef ..., 111
Lagzi, Fereshteh............................... 115
Lai, PIK-Yin ... 91
Lajoie, Guillaume ............ ..ot 121
Lankarany, Milad ....................... 28, 76,113
Lapish, Christopher............................ 105
Large, Edward W. ...t 105
Larson, Stephen..............cooiiiiii, 105
Latorre, Roberto.......................... 106, 123
Lavin, Antonieta ... 106
Lazar, Andreea . ........ccoviiiiiiiiiiineanns 122
Lazar, Aurel A. ... 28,72



Lazar, Aurel A. ... 126

Lee,Heonsoo................... ... . e 103
Lee,HyangWoon.............. ..., 106
Lee,JungH ... 109
Lee, Seungjun .......ovviiii i 106
Lee,Uncheol.............. .. i i, 104
Lefebre, Jeremie ...t 21, 33
Lefebvre, Jérémie...........cciiiiiiin... 110
Lenk, Kerstin ........cooviiiiii i, 101
Leski, Szymon......................... 21, 34,106
Leuthold, ArthurC ........... ..., 107
Li, Brenna.........coooviiiiiiiiiann, 24, 49
Li, Yinyun. ... 120
Lienard,Jean ..o, 94
Lillenstrom, Hans ................cciviiiinn... 106
Lima, Pedro..........cooeiiiii i 90
Lin, Zhanmin.......... ..o 90
Lindén, Henrik ...t 96
Lindig-Leon, A. Cecilia......................... 115
Lindner,Benjamin ..................covieinn... 121
Linne, Marja-Leena..................... 24,53, 106
Lisitsyn, Dmitriy . ... 96
Liu,Daniel ... 96
Lizier,Joseph T. ...t 113, 117
Loebel, AleX ... 107
Loewenstein, Yonatan....................... 25, 58
Logothetis, NIkos K ............ooviiiiiiinnat. 89
Lombardo, Joseph ............ ...l 99
Lonardoni,Davide ..............ciiiiiiia, 110
Lorenzi, Christian ..................covve.... 25,57
Lowet, EriC......oovvii i 25, 56
Lucas, Sarah............coiiiiiiiiiii 98
Luebke, Jennifer............coiiiiii ... 124
Luna, Carlos ..ot 93
Ly, Cheng..........ccoiiiiii i 107
Lynn, Patrick........... ... i 106
Lyttle, David. ... 91
Lytton, Bill..........coii 28,74
Lytton, Willam W ......................... 103, 107
M
Maccione, Alessandro...................coue.L. 88
Mace, Michael .............. ..o, 88
Mackwood, Owen............covviiiiinnnnnn.. 118
Maddess, Ted............ccoviiiniennnnn.. 107, 123
Maki-Marttunen, TUOMO . .........coviieneennn. 96
Mahan, MargaretY ..........ccovviiiiiinn.. 107
Malerba, Paola..................coooiiiiiin. ., 88
Mancarci, Ogan ...........cooiiiiiiiiannn. 24,49
Mandali, Alekhya...................coooiiiiat 90
Manninen, Tiina ............covveiennn.. 106, 114
Mareels, Iven ... i 90
Marin, BOris. ..o 98
Marmarelis, Vasilis. ...t 108
Marsalek, Petr...........cooiiiiiiii .. 108
Marshall, James........................ 27,69, 108
Martin, Christian David......................... 117
Martinez Otero, LUisS ...........coovviiiinnnn... 109

Mashour, George ..........ccvviii i 104
Matias, Fernanda.......................coee. 109
Matic, Vladimir...............ooiiiiiii 116
Mato, GErman ..ot 108
Mattia, Maurizio........................ 29, 83, 108
Matveev, Victor ... 108
Maul,Pascale .............ccociiiiiiiiin... 111
Maurer, ANdrew . ...t 88
Mavritsaki, Eirini . ... 114
Mayr, Christian. ... 101
Mazzoni, Alberto...................... 97, 109, 111
McDougal, Robert A...................coat 107
Meffin, Hamish.................. ... .. ... .. 90
Meier, Karlheinz......................... 24,47, 95
Meijas, Jorge.......covieii i 29, 84
Melachrinos, Constantinos..................... 113
Mellor,Jack. ... 122
Mémoli, Facundo................cciiiii . 93
Mengiste, Simachew........................... 105
Menzel, Randolf ................ccooiiii., 119
Menzies, Rosemary...........cooviiiiiiennnn. 103
Merrison-Hort, Robert........................... 89
Messer, Michael .............. ..ot 116
Metzner, Christoph............................. 127
Meyer, Robert ......... ... 111
Mi,Yuanyuan ...........ccooiiiiiii i 125
Micera, Silvestro............ccooiiiii i, 109
Michalikova, Martina........................... 103
Michel, Christophe ..., 98
Migliore, Michele..................... 107, 109, 126
Migliore, Rosanna ...................ccovinn. 109
Mihalas, Stefan................ ... oL 109
Mijakowska, Zofia................ .. ...l 106
Milan, AnaPaula................. ..ot 109
Miles, Richard................ ... i, 87
Milton, Russell ......... ... 93
Miner,Daniel ............ ..o 122
Mirasso, Claudio. ..o, 109
Mofakham, Sima............................... 126
Molkov, Yaroslav. ... 116
Montemurro, Marcelo .......................... 109
Moon, Joon-Young ... 104
Moren,Jan.............................. 22, 39, 96
Moreno-Bote, Ruben .................... 29, 83, 95
Morozova, Ekaterina.....................oo.. 105
Morrison, Abigail.............. ... .. oo 109
Mulansky, Mario .....................oo... 104, 110
Mufioz-Cespédes, Alberto ..................... 108
MUnro, Erin. . ... 122
Muresan, Raul.............. ..o, 110
Murray, Micah M. ......... ..., 110
Muscinelli, Samuel ................. ... it 97
Myroshnychenko, Maxym ...................... 105
N
Nachstedt, Timo.......................... 121, 125
Nadim, Farzan................cccoiiiiinoinn. 110
Nair, Satish...........coii 26, 63



Nalberczak, Maria ............ccoovviiiinnonn. 106

Nandi, Dipankar..............c.cooiiiiiiinnn.. 88
Naulaers,Gunnar.............ccoveeeeiiinen... 116
Nawrot, MartinPaul....................... 110, 119
Ness, Torbjarn .. ... 114
Netoff, Theoden |................... 25, 44,98, 110
Neuman, Jeremy ...t 123
Neymotin, Samuel .............. ...t 107
Nguyen-Vu, Barbara ....................o.oo... 114
Niebur, Ernst. ... 110
Nieus, Thierry. ..., 88, 110
Nikolic, Konstantin.................cccviu... 111
Nolan, Matthew .................cccvivn. .. 26, 64
Nomura, Taishin............................. 28,78
Norris, Scott . ... 111
Novo, Derek ... 111
Nowotny, Thomas................. 27,69, 111, 125
(@]
Obermayer, Klaus.............cccooiiviiiian.. 111
Oddo, Calogero. ........cvviiiiiiiiii e 111
Okamoto, Hiroshi ................. ..ot 112
Oprisan, Sorinel A........................ 106, 111
Osamor, VIiCtor........ove i 112, 121
Osinski, Boleslaw . ...............ccooiii .. 102
Quanounou, Gilles ...t 95
Ozcan, SUreYYa . .....ovei i 90
Ozer,Mahmut ... 112
Oztop,Erhan ............. ..ot 112
P
Paik, Se-Bum...........coiii 112
Palyanov, Andrey ... 105
Pamplona, Daniela...................ooovent, 104
Panzeri, Stefano................. ... oL 112
Papadourakis, Vassilis......................... 112
Papoutsi, Athanasia............................ 113
Parimala, Alva........... ... 124
Park, I Memming ...............ooiiiiiin, 112
Parmelee, Caitlyn ..., 93
Pastalkova, Eva...................cooiiaL. 101
Paulsen, O.......coiiiiii 117
Pavese, Nicola.........cooiiiiii i 88
Pavlidis, Paul ...............c.cooiiiiia, 24, 49
Pena, RodrigoFO ..., 115
Peterson, Andre. ...t 90
Petkoski, Spase..........ccoiiiiiii i 101
Petrini, Francesco.............ccoviiii i, 109
Petrovici, Mihai A. ....................... 24,47, 95
Pettersen,KlasH..................coiiiiiia... 96
Peyser, AleX. ... 29, 82
Pfeiffer, Michael................. ... ... il 113
Pfister, Jean-Pascal............................ 113
Philips, Ryan............coiiiiii i 91
Phillips, William A. ....... .. ... 113
Pincet, Frederic..............ccoiiiiii.. 126
Pirschel, Friederice ...................ooie... 104
Platkiewicz, Jonathan ........................... 87
Poirazi, Panayiota................cccoviein... 113

142

Pokora, Ondrej. .....coviiii i 104
Polani, Daniel................ccoiiiiiiiii 118
Ponce-Alvarez, Adrian .......................... 95
Pons, Antonio J...........coiiiiii i 97
Ponzi, Adam...............coiiiiiiiiii .. 124
Prescott, Steven A ..................... 28,76, 113
Preuschoff, Kerstin..................coiiio. ... 97
Priesemann, Viola......... 24, 26, 48, 65, 113, 117
Prohens,Rafel................ ..ot 120
Proix, Timothée ........................ 26, 66, 101
Prytkova, Tatiana ..................ccovinnn. 125
Psychas, Konstantinos......................... 126
Pu,Shusen..............ciiiiiiiii .. 121
Puscian, Alicja. ... 106
Q
Quax,Silvan...............coiiiiiiii i 121
Quilichini, Pascale ........................oo.u 87
Quintana, Adrian...........cooiiii i, 98
Quoy, Mathias ................ccoiiiiii .. 113
R
Radwanska, Kasia..............ccvvieniannn. 106
Ramirez, Jan-Marino...............cooviinn.... 93
Ramirez-Villegas, Juan F........................ 89
Raos, Vassilis..........cccviiiiiiiii i, 112
Raspopovic, Stanisa............coovievinnnn... 109
Rasumov, Nikon. ..., 94
Ratnam,Rama............................. 92,113
Raviv, Offi. ... 25, 58
Raymond, Jennifer............................. 114
Razi, Adeel ...t 120
Rebollo,Beatriz..............ccoiii ... 108
Remme, Michiel.............. 28,75, 103, 114, 116
Renaud, Sylvie ... 102
Rentzelas, Panagiotis.......................... 114
Rich, Scott.........ccii i 126
Richardson, Magnus...................... 114, 115
Rieke, Fred. ... 25, 62
Rigosa, Jacopo ..o 109
Rimbert, Sebastien............................ 115
Rinzel,John........ ... 103
Ritter, Petra.........cooiiiiii e 95
Roach,James...........cciiiiiiiiinn.. 127
Roberts, James A. ... 115
Roberts,Mark.................coiiiiii.. 25, 56
Roeper,Jochen...............ccoviiiii ... 116
Rongala, Udaya Bhaskar....................... 111
Rooy, Marie..........coiiiii et 105
Roque, Antonio C.........coooiiiiiiiiine 115
Rostro-Gonzalez, Horacio...................... 101
Roth, Arnd.......... ..o i 99
Roth, Zachary ...t 101
Rotstein, Horacio G ................ccoven. .. 28, 73
Rotter, Stefan ... 115
Rougier, Nicolas........................ 21, 33,115
Rubchinsky, Leonid ......................... ... 87
Rumbell, Tim ... 124
Rummell,Brian ... 116



Runpel, Simon...............oooiiii et 102

Ruohonen, Keijo.............cooiiiiiin it 106
Rupp, ANdré . ... ..o 115
Rut,Elias.........covi i 116
Rybak, llya ... 116
S
Sabo,Chelsea................cooiiiiiiii ... 108
Sakata, Shuzo............................ 100, 122
Salmasi,Mehrdad ................... ... ... 107
Sanchez-Vives, Maria Victoria................. 108
Sander, Leonard.............. ... 127
Sandor, BulcsU. ... 99
Santamaria, Fidel...................... ..., .. 120
Santos,Julia............... .o 25, 60
Saudargiene, AuSIa. . ... 106
Scarpetta, Silvia ..............oooo 88
Schemmel, Johannes ................... 24,47, 95
Schenck, Wolfram........................... 29, 82
Schilbach, Andreas............................ 125
Schleimer, Jan-Hendrik ........................ 116
Schmidt, Deena R ..............cviiiiiinn... 121
Schmidt, Joachim............................... 94
Schneider,Gaby ............. ...l 116
Schreiber, Susanne...............coiiiien... 116
Schroter, MS . ... 117
Schiicker, Jannis. ..., 100
Schultz, SimonR.................. 27,70, 111, 117
Schwabedal, Justus................c..ccovnt. 27,71
Schwalger, Tilo. ... 98
Schwartz, Zachary ................ocooiiiiiint, 94
Schweikard, Achim ................coviiiat. 127
Seamons, John Wg....................... 107,123
Segaran,Joshua..............cooiiiiiiinnn., 116
Seidenstein, AlexandraH...................... 107
Sellers, Kristin K. ... 101
Sengor, Neslihan Serap........................ 117
Sernagor, Evelyne ............ ... oo, 104
Shankar, Praveen.................coooiiinn.. 123
Sharifian, Fariba .............. ... .o oL 97
Sharpee, Tatyana ........................... 27,70
Shaw, Kendrick ............ ..o i 91
Shea-Brown, Eric ...................... 25,62, 117
Shepherd, Gordon..................cociiiiin, 107
Shih, Chi-Tin. ... 117
Shimono, Masanori............c.covviiveeinnn.. 104
Shimoura, Renan..............coviiieneinnn. 115
Shinn,MaX.........coooiiiiiiiii i 25, 44
Shlizerman, Eli......................... 25, 60, 118
Sigurdsson, Torfi. ... 116
Silver, R.ANQUS . ..o 98
Sinha, AnKur............ o i 118
Sinha, Nishant......................coiiii.. 118
Sleigh,Jamie............ ..o, 118
Smit,Daniel ... 126
Smolinski, Tomasz G..............ccoveveeinnn.. 99
Song, ZhUoYi. ..o 89, 102
Spiegler, Andreas............... 25, 26, 59, 66, 101

Sprekeler, Henning................ 24,52,113, 118
Spruston, Nelson ...t 102
Squirrell, Daniel.......... ... i 109
Stamoulis, Catherine................ociiiin.. 91
Stavrinou, Maria ..........cooiii i 96
Stemmler, Martin ................ .. oo 107
Steuber, Volker ...................... 118, 119, 124
Steur, EriK ..o 123
Stevenson, lan......................... ... 119
Steyn-Ross, Alistair ................. ... 21,33
Steyn-Ross, D. Alistair ......................... 118
Steyn-Ross, Moira ..o 118
Stimberg, Marcel............. 22, 24, 36, 54, 89, 90
Stolyarov, Roman.................. ...l 111
Storms,Jordan C.............ccoiiiiiiii 110
Strube-Bloss, Martin........................... 119
Suffczynski, Piotr ....................... 97,119
Surace, SIMone C...........cviiiiiiiiian. 113
Suter, Benjamin.......... ... ..o 107
Sweeney, Yann ... 100
Szigeti,Balazs...................ooio 105
T
Tabas, Alejandro. ... 115
Tam, Nicoladie D ...................c... .. 119, 120
Tang, Jiaying .......ooviii i 117
Tang, Rongxiang...........cooviiiiiiiiennnnn.. 120
Tang, Yi-Yuan.......oooii e 120
Tchumatchenko, Tatjana ................... 92, 120
Tebaykin, Dmitry ............... ...l 24, 49
Teka,Wondimu ..., 120
Telenczuk, Bartosz. ..., 95
Telenczuk, Maria.............cooviiiinn.n, 24,54
TerWal, Marije. ... 121
Teruel, ANtONIOE. . ..., 120
Tetzlaff, Christian . .... 24, 25, 50, 61, 120, 121, 125
Tetzlaff, Tom ........... ..o i 95, 96
Tezuka, Tar0. ..ottt 121
Thivierge, Jean-Philippe ....................... 121
Thoby-Brisson, Muriel.......................... 121
Thomas, PeterJ.................... 27,71,91, 121
Thoreson,Wallace .................coiiinn... 93
Tiesinga, Paul ...................cciiiiiat. 121
TIUrYN, JEIZY . o e 121
Toker, Lilah..............cooiii i 24, 49
Tompa, Tamas. ...t 106
Tononi, Giulio. ... 122
Topalidou, Meropi..........covviiiiniin.at. 115
Toporikova, Natalia .................cooooint. 121
Torben-Nielsen, Benjamin.......... 28, 75, 94, 119
Torcini, Alessandro......................... 89, 122
Torres, Joaquin J. ..., 123
TOSIC, TAMArA . . ..ot iii et eiieee s 101
Toth, TibOr ... 94
Toyoizumi, Tar0 . ... .o v i ae e 122
Trembleau, Alain.................. ..ot 126
Trengove, Chris............ ... .oooiias. 95, 123
Triesch,Jochen............ccoiiiii ... 122



Tripathy, Shreejoy ..., 24,49

Tsaneva-Atanasova, Krasimira............. 92,122
Tuomo, Maki-Marttunen ................. 24,53, 93
Turner,JamesP.................. ... ..., 111, 125
Turner, Maxwell ............. ... ... ..., 25, 62
Tyukin, Ivan. ... i 123
U
Ukani, NIKulH.......... ... i 126
Uzuntarla, Muhammet......................... 112
\%
Valizadeh, Alireza..............ccooeviiiiinn... 122
van Albada, Sacha...................... 24, 46, 96
van den Heuvel, Martijn......................... 89
van Drongelen, Wim.................... 28,774,123
van Elburg,Ronald ............................ 103
van Hook, Matthew.............................. 93
van Huffel, Sabine ............................. 116
van Leeuwen, Cees............covviivnnn.. 95, 123
van Opstal, John.......... ... ... ..ot 123
van Rossum,Mark .......................... 26, 64
van't Spijker, Heleen ............................ 90
Vanni, SiMO . ... e e 97
Varona, Pablo.................. ..o it 123
Vasilaki, Eleni...............oooiiiiiiiii i, 108
Vasiliki, Eleni............... ... oo 27, 69
Veale,Richard.................cocoiii L. 125
Vélez, Virginia Gonzélez ........................ 99
Vencovsky, Vaclav ...................oocoiin 123
Venugopal, Sharmila....................... 91, 123
Vervisch, Jan ... 116
Vich Llompart, Catalina........................ 120
Victor,Jonathan .................cciiint. 123
Vigério, Ricardo................ .. .ooiii 97
Vincent-Lamarre, Philippe...................... 121
Vogels, Rufin ... 124
Vogt, SIMON ... 101
Volgushev, Maxim..................ccoivin.s. 119
von der Heydt, Rudiger ........................ 110
Vornanen, InKeri............ccoooiiiiiiinn, 101
W
Wagatsuma, Nobuhiko......................... 110
Wang, Da-Hui ............ ..ot 124
Wang, JiISUNG .. ..o 103
Wang, Kaier ... 118
Wang, Ting-Yuan ..........coovieiiniinnnnnnnn. 117
Wang, Yanbin............... ... oL 25,55
Wang, Yingxue ... 101
Wang, YUNpeng ... 93
Warburton, Julia ................ ... 92
Watson, Patrick . ... 92
Weaver, ChristinaM ...............ccooiinn... 124
Weber, Simon.............. .. i, 24,52
Wegener, Detlef........... ..o 96
Weidel, Philipp...........coooiiii 109
Weiliang, Chen..............ccooiiiiii i 94
Wennekers, Thomas.............ccoveeviinnt. 124

144

Wernecke, Hendrik...............ccooiiiiin.. .. 99
Whitcomb, Daniel ................cccoiiii .. 92
Wibral, Michael ........................... 113, 117
Wickens, Jeffery ... 124
Wiedau-Pazos, Martina ......................... 91
Willemsen, Rob ..ot 90
Wilson, MarCus .......c.oovviiiiii i 118
Wilting, Jens ... 24, 48
Winter, lan M. .......... ..o i 25, 57
Witoelar, Aree.......ccoiiiii 93
Woergoetter, Florentin.......... 24, 25, 50, 61, 120
Wérgétter, Florentin....................... 121, 125
Wojcik, Daniel K. 124
Wrébel, Andrzej..........ooooiiiiiii i 119
Wrébel, Borys ... 119
WU, Sl 124, 125
Wunsch, ZdeneK. ..., 108
X
Xia, Yan .. e e 125
Y
Yang, Susan Keun-Hang....................... 125
Yates, Jacob............. ... 112
Yavuz, ESin..........coviiiiiii 111, 125
Yger,Pierre.................. . 22, 29, 36, 81, 90
Ying, Tianlin ......... ... i 102
Yoshida, Masatoshi............................ 125
Yoshida, Motoharu..................c.ccovvnn.. 125
Yoshimoto, Junichiro...............ccovvinn... 96
Yousif, Nada ............cooiiiiiiii i 88
YU, Liu-Tao ..o 124
YU, YUQUO ..ot 125, 126
Z
Zachariou, Margarita........................ 25, 56
Zakharov,Denis ............cciiiiiiiiiiin. .. 105
Zalesky, ANArew ........ccoov it 89
Zang,Yunliang ... 94
Zapotocky, Martin...................... 28,78, 126
Zarei,Parvin........... ... 98
Zbrzeski, Adeline .............. ... oL 102
Zerlaut, Yann. ... e 95
Zhang,Wen ...........ccoiiiiiiinnnn, 125, 126
Zheng, PiNg ... 125
Zhou, Shanglin ..., 126
Zhou, Yiyin ... 126
ZNOU, YU. ..ot e e 102
Zick, Jennifer ... 110
Zochowski, Michal ........................ 126, 127
Zouridakis, George ..o 120
Zurowski, Bartosz. ... 127
Zylberberg, Joel........................ 25,62, 117



Contributions Index

A
Abbas,James...............iiiii i P111
Abdelmotaleb, Ahmed ................. P237, P238
Abouzeid, Aushra ................... .ol P117
Abraham, Wickliffe C................ocoovintt. P1
Acimovic, Jugoslava...............cceiiin, o7
Adams, Roderick ...................... P235, P280
Aertsen, Ad ... P135
Aggarwal, ANU. ... ..o P2
Ahissar, Merav...........ccoiiiii i 012
ANN, Sora. ... P144
Ahn, SUNGWOO . ... o e P3
AKin, Myles. ... P90
Albantakis, Larissa..........oooviiiiinnnn. P262
Albert, Stefan ............. ..o P217
Amarasingham, Aschan ........................ P4
Amin, Hayder........................... P13, P177
Anderson,DavidF ..................ooeen. P258
Andreassen,Ole......................... P45, P68
Angulo-Garcia, David ................... P14, P263
Anwar, Haroon................coiiiiienninn. P173
Apicella, llenia.............cccoiii it P6
Archer,Evan............ ... i, P194
Ardila-Jimenez, SilviaC................ P222, P224
Aschauer, Dominik ................coooiun... P114
Asokan, Meenakshi..............ccooviinnn... P29
Aspart, Florian ..., P185
Augustin, Moritz................oooi i P183
Auth, JohannesMaria........................ P287

B
Babichev, Andrey......................... P43, P44
Bacak, Bartholomew ......................... P215
Bahn,Sabine................cccoiiiiiii i, P21
Bain, Peter. ..ot P7
Bal, Thierry.........ooiii e P59
Balague,Marta.................coiiiiiiiiin, P58
Balaguer-Ballester, Emili ............... W15, P213
Bamber,Jon...........o i P99
Banks, Robert W ...t P16
Banquet,JeanPaul .......................... P200
Barardi, Alessandro ......................ou.. P76
Barbosa,Joao ...t P8
Barbosa, MarconiS.................... P154, P278
Bardakjian,Berj..............coii i P9
Barnes, Carol ...........ccooiiiiiiii i P10
Barnett, William .......................oooiet. P42
Barreiro, Andrea....................... P179, P229
Bazhenov, Maxim...............ccooviinnen... P11
Beim Graben, Peter...............cooviivi.a P105
Ben-Jacob,Eshel ...................... ... .. P304
Benichoux, Victor. ...t P20
Benna,Marcus K ..., F1
Benuskova, Lubica..............ccoiiiiiiii. . P1

145

Berdondini, Luca........................ P13, P177
Berg,Eva...........o P50
Berke, Joshua Damien ........................ P14
Besserve, Michel .....................oooaL P15
Betkiewicz, Rinaldo .......................... P174
Bettella, Francesco..............cooviievinnn.. P45
Betterton, Ruth................. ... ...l P267
Bewick, GUY S........oii i P16
Bibichkov, Dmitry.................ocievint P115
Biehl, Michael ................... ... ..ot P120
Bill, Johannes...................c.ciuneL. 02, P62
Binas, Jonathan.............................. P195
Bird, Alexander ......................... P40, P205
Blackman, Rachael........................... P175
Blackwell, Kim Avrama..................coouve.. T5
Bohnenkamp, Lisa.............cooviiiiin... P69
Bolhasani, Ehsan ............................ P270
Bonon, Jacopo........cii i P126
Booth, Victoria......................... P302, P303
Boraud, Thomas ..............ccovveviinnnn... pP212
Borisyuk, Roman.......................... P7, P17
Bos,Hannah ...............cooiiiii .. P97
Bougrain, Laurent ................ ... P207
Bouse,Jaroslav............ccooiiiiiiiii P276
Bower,JamesM ...t P236
Bozanic, Nebojsa...................... P133, P170
Braune, Christian................... ... ... P134
Breakspear, Michael ........................... P18
Breitwieser, Oliver ................cociiin. ... P62
Brette, Romain.............. T3, 08, W9, P19, P20
Broek,Jantine AC...........cciiiiiiiiiin... P21
Bubna-Litic, Anton................. ... P154
Buchin, Anatoly ............. ... .. ... P5
Buckwar, Evelyn................cooiiiiiii P22
Bischges, Ansgar............ccooviiiiiint, P50
Buhry,Laure ... P292
Bullmore, Et........cooiii pP221
Buonviso, Nathalie..................... ...t F3
Bures, Zbynek............ .o P157
Burke, Sara .........ccoiiii P10
Burkitt, Anthony N............ P23, P85, P86, P113
Butts, Daniel..............coiiii i 09
Butz-Ostendorf, Markus....................... W14
Buzsaki, GYOrgy . .....coviiiiiiiii i P4
Bytschok, llja................oooiiiat. 02, P62
C
Cafaro, Jon. . ... 016
Calabrese,Ronald............................. P42
Calim, Ali....oo P189
Campbell, Benjamin...................covinnn. P12
Canals, Santiago...........ccovvvvivinnnnnn.. P167
Canavier, Carmen .........c.covvviiieeennnnn.. W11
Cangelosi, Angelo............cooiiiiiiiins, P283



Cantarelli, Matteo .. ..................... P82, P141

Capogrosso, Marco ..........cooeviiiiiian. P163
Capone, Cristian0..........coovvvviiiinnnnnn, P161
Carelli,PedroV........................ P166, P167
Carrillo-Medina, JOSé.............coovvvvnn.. P142
Cattani, ANNa ..., P193
Cayco Gajic, AleX ..ot p227
Caze,Romain..................c.ccvint P37, P223
Cessac,Bruno...........................L P130
Chadwick, ANQUS. ... 018
Chafee, Matthew ............. ..., .. P175
Chaillet, Antoine............ciiiii .. P24
Chakravarthy, Srinivasa .. P25, P26, P27, P28, P29
Chambers, Jordan................cocvvvinn... P85
Chan, C. K. oo e P30
Chance, Frances ............cooviiiiiiinnennn.. P10
Chandler, ScottH. ..ot P31
Chang,Bernard ..................cciiiiinn.. P32
Charlesworth, P........ ... i P221
Chaud, VitorM ......... ..o P129
Chen,Kuan-Peng..............coiiiiiint, p228
Chen,Nan-Yow ..........cccoviiiiineninnn.. P228
Chen,Zheng........... .o i P294
Chhabria, Karishma................. P26, P28, P29
Chiang, Ann-Shyn.............. ..ot p228
Chiel, Hillel ... P33
Ching, Yu-Tai.........cooviiiii i P228
Chintaluri, Chaitanya......................... P286
Chizhov, Anton ... P5
Cho,Kei. . i P34
Choi,John.............cciiiiiiii i P122
Choi, Woochul ................ .ot P191
Chowdhury, Samir............................. P43
Christoph, Michel ............... ... .. .. ... W12
Chuang, Chaochun.................... ... ... P35
Ciura, Sorana ........ccooveiiiiii i P171
Clopath, Claudia................... P36, P37, P126
Coca,Daniel................cciiiiiit. P46, P47
Cohen,Neal............ccoiiiiiiiii .. P38
Compte, Alberto ..ot P8
Constantinou, Maria.......................... P168
Cook, Mark......coeiiiii e P23
Cook, Matthew .............cooiiiiiit, P107
Cope, AlEX .o P159
Copelli, Mauro .................. P166, P167, P208
Courtiol, Emmanuelle........................... F3
Cowan,Jack .............coeviiiiinnn... K2, P271
Coy, Dominique .........cooiiiiiiiii p278
Crone,Nathan E......................coveet. P73
Crotty, Patrick ... P39
Cui, XUe-MEI ..o P93
CUlL, YUWEI . .o i 09
Cuntz,Hermann.......................... W7, P40
Currie, Michael........... ..., P141
Curto, Carina.......covviie i P41
Cymbalyuk, Gennady......................... P42

146

D
d’Albis, Tiziano............coooii i P240
Dabacan, Adriana.......................... .. P171
Dabaghian, Yuri.......................... P43, P44
Dahmen,David............cooiiiiiiiiinnnn. P67
Dale, Anders ..., P45
Dasgupta, Sakyasingha ........................ 05
Dashevskiy, Tatiana..............ccooevievnn... P48
Daun-Gruhn, Silvia....................... P49, P50
Dauwels, Justin ...............ciiiiiiinn... P230
Davey, Neil......... P235, P236, P237, P238, P280
David, Frangois ..........ovvev i F3
David, Stephen.............cciiii P51
Davis, OliVer. ... ..ot P17
Dayanithi, Govindan.......................... P299
de Calbiac, Hortense .................cocove.. P171
de Candia, Antonio ... P6
de Cheveigné, Alain................ccoiininn. 011
de Curtis, Marco .........covvviiinneinnnn.. P242
de Gruyter, Martin HM........................ P21
de Schutter, Erik... P52, P53, P54, P55, P56, P241
deSimone,Giada................coiiiiiian. P164
deVos,Maarten...........cooviiiiinneinnn.. P216
deWeerd, Peter..............ciiiiiiiiin. .. 010
de Wiljes,Oltman ...t P120
deZeeuw, Chris........cccoviiiiiiiiiinnn... P280
deZeeuw, Chrisl...........cooiiiiiiiiin.. P21
Deco, GuStavo.........ccvviiiiiienan. K3, P57
Deger, MOtz . ... P79
Deleuze, Charlotte. ..., P59
Delgiudice, Paolo............................. P161
Demb,Jonathan.......................... ... 09
Dempere-Marco, Laura........................ P58
Deng, XiNYi......ovouiiiiiiiiiiiiiiiiaenn, P66
Dereymaeker, Anneleen...................... P216
Destexhe, Alain.......................... P59, P60
Detorakis, Georgios ..........oovvviieninnnn... P24
Devor, ANNa . ... P45
Di Marco, Stefano....................... P13, P177
Diba, Kamran.............ccoiiiiiiiiii i, P4
Diehl,Peter U ............ccoiiiiiiiii . P107
Diesmann, Markus...O1, P61, P62, P67, P96, P97
Dimitrov, Alexander....................coov... P51
Dimitrov, Alexander G .................ccovo.t. W2
Dinov, Martin.................covinn... P63, P214
Djurfeldt, Mikael.............. ..ot T6
Djurovic, Srdjan . ... P45
Doya, Kenji......coooiuiii i P64
Draguljic, Danel ................ccocvivinn.. p282
Duarte,Renato............................... P169
Dura-Bernal, Salvador........... P122, P152, P153
Duvarci, Sevil ..o P218
Dzakpasu,Rhonda............................ P90
E
Echeveste, Rodrigo ...................... P65, P87
Eckmann,Samuel............................. P65
Eden, Uri.......ooiii i P66



Eelkmanrooda, Oscar ...........coueiiinnnnn. P280

Einevoll, Gaute T.......... T2, P45, P67, P68, P203
Elibol, Rahmi............. ... ... ., P225
Elices, Irene.........cocoiiiiiiiiiiiii i, P275
Eppler,Bastian.................... ... ... P114
Eppler, Martin Jochen........................... T6
Ermentrout, Bard................. ...l P258
Ernst, UdOA ... ... P69, P70
Evans, Benjamin................. ...l P178
Evans, Rebekah.............................. P123
F
Fairhall, Adrienne ..., K1
Fan,Bogiang.................... P295, P296, P297
Faraji, Mohammadjavad ....................... P77
Farkhoo, Farzad ................................ T4
Farkhooi, Farzad ............................. P174
Farokhniaee, Amirali ......................... P140
Fasoli, Diego .......covvviii i P193
Fauth, Michael ................ ... .. ool .. 015
Fedorov, Leonid......................... P81, P279
Fedotenkova, Mariia.......................... P233
Fenton, Andre A. ..., P119
Fermani, Francesco.............cccvvveinnn.. P206
Fink, Christian..............ooovi it P302
Fischer,Caroline ..................cooiat. P259
Florescu,Dorian..............ccoeeiiiiinenn... P46
Fontaine,Bertrand............................. P72
Forsythe,lan.................cooiiiiiinn, P84
Fouquet, Coralie ...............cccvivvvnnn.t. P298
Fourcaud-Trocme, Nicolas ...................... F3
Franaszczuk, Piotr J. ....................c..... P73
Francis, Joseph........................ P122, P153
Frank, Loren........... ..o, P66
Frie, David D..........coiiiii i P258
Frohlich, Flavio. ...t P105
Fukai, TomoKi .............ccoiiiiiii ... P74
Fusi,Stefano .............. ... F1
G
Gartner, Matthias............................. P218
Gajewska-Dendek, Elzbieta .................. P243
Galan, RobertoF.............cooiiii L P258
Gao, Qi .cviii i P288
Garcia-Ojalvo, Jordi . ..................... P75, P76
Gastpar, Michael C........... ...t w2
Gaussier, Philippe..............oooi L P200
Geng,Kunling............oooiiiiiiiiii P156
Gentiletti, Damiano........................... P242
George, Richard M ................ooooiint. P107
Georgopoulos, ApostolosP................... P155
Gerstner, Wulfram .............. K4, P77, P78, P79
Ghasemi Esfahani, Zahra .................... P269
Ghazizadeh, Ali ..., P80
Giese,Martin...................ooe.. P81, P279
Gigg,John ... ... P168
Gil, AMparo ...t P91
Gill, Jeffrey ..o P33
Gilson, Matthieu......................... W13, P57

Giovannini, Francesco.............couveuven.n. P292
Giugliano, Michele ................. ... ... W9
Glasauer, Stefan .................. ..o i, P149
Gleeson, Padraig ................. W16, P82, P141
Gnatkovski, Vadym....................... ... pP242
Goetz,Lea............... P95
Goetze, Felix ... P30
Gollo, Leonardo L ................ P18, P166, P208
Gonzalo Cogno, Soledad..................... P160
Goodman,Dan....................... T3, 011, P19
Grado,LoganL..........cooviiiiii ... P83
Graham, Bruce..........covviiiiiiiiianns. P84
Grayden, DavidB ............ P23, P85, P86, P113
Griffith, Thom ......... ... ... ... L. P268
Grigorovsky, Vasily. ...t P9
Groen,MartineR..............coiiiiiiiiiii., P95
Gros, Claudius ................ P65, P87, P88, P89
Gruen, SoNja . ......oovuiiiii i P67
Grytskyy, DMytro ........ooovviiiiiiiii e P96
Guillamon, Antoni............ccciiiiii . P251
GUO, YiXIN o P90
Gurney, Kevin ... W1, P159
Gutierrez, Crhistan Mg........................ P91
Gutkin, Boris..........ccovi i P5, P137
H
Haasdijk, Elize D ...t P21
Hadjipapas, AVgiS . ... 010
Hadrava, Michal......................... P92, P101
Hausser, Michael .............................. P95
Hagen,Espen..............ccooiiiinnt T2, P67
Halnes, Geir...........ccooiiiiii s, P45, P68
Han, SeungKee.............cooiiiiiii i, P93
Handa, Takashi.....................coioii. P74
Hanoune, Souheil ................. ... . ... P200
Harnack, Daniel ..., P70
Harrington, Melissa............................ P94
Hartmann, Christoph......................... P266
Hashemi, Meysam ...................cooiunn P232
Hashemiyoon, Rowshanak.................... w12
Hassannejad Nazir, Azadeh.................. P146
Haueisen, Jens ... 013
Havela, Rilkkka...............ccooiiiii s, P148
He,Guan-Wei...........cviiiiiiiiinn. P228
He, Yujia...oooooe e P294
Heikkinen,Hanna ............................. P71
Helias, Moritz .................... 01, T4, P96, P97
Hellgren Kotaleski, Jeanette ................... P98
Hennig, Matthias .................. ...t P98
Hepburn, lain ............................ P54, P55
Herpich, Juliane.............................. P253
Herrmann, J. Michael.......................... P99
Hesse,Janina............coooeiiiiiinneninn. P219
Heydarieh, Seyyed Mohsen.................... P80
Hilgen, Gerrit. ... P130
Hillen,Brian..............cooiiiiiiiii .. P111
Hines, Michael ................. ... o ii... P151
Hirata, Yutaka ..............coovii it P100



Hlinka, Jaroslav......................... P92, P101

Hoebeek, Freek ............. .o .. P280
Hof, Patrick............ ..o i P282
Hofmann, Ulrich.............................. P103
Hokanson, Jim........... ..., P141
Holt, Abbey ... F2
Horecka, Kevin..............ccoiiiiiiinn.... P38
Huberfeld, Gilles ..., P5
Huk, Alexander C..............ccoiiiiiiinn, P194
Hummos, Ali ..........o o017
Hunold, Alexander.................ccccvvvvnn.. 013
Hutchison, R Matthew ......................... P18
Hutt, Axel ................... T1, P105, P232, P233
Hwang, Dong-UK ............ ...t P93
Hyttinen, Jari AK. ...t P106
I
Ibbotson, Michael R ........................... P86
Idili, Giovanni...............cooiiiiiiin P141
Igarashi, Jun ............. ... i i P64
lleri, Ugur ... P189
llin, Vladimir. ... P239
Inagaki, Keiichiro.................. ... P100
Indiveri, Giacomo...................... P107, P195
Intosalmi, Jukka................ccooiiiian. P147
Isa, Tadashi.............coiiiiiiiii i, P293
Itskov, Vladimir................... ..., P108
J
Jacoby, NOFi........cooviiii e 012
Jaffe-Dax, Sagi........cocovviiiiiiiiin. 012
Jahed,Mehran ...................... ...l P80
Jang,Jaeson...........ciiii i P192
Jansen, Katrien ... P216
Jaramillo-Avila, Uziel ......................... P104
Jarman, NickK ... pP272
Jarvis,Sarah..................... P37, P178, P223
Jedlicka, Peter...........ccooiiiiiii i P1
Jedynak, Maci€j .........cccoieiiiiiii i P75
Jirsa, Viktor................. 013, 020, P109, P110
Jitsev, Jenia. ... P169
Johnson, Erik ..., P201
Johnson, Matthew D........................... P83
Jones,Douglas......................oca P201
Jordan,Jakob .......... ... P62
Jun, Sangbeom ............ ...l P144
Jung,Ranu............ccooiiiiii P111
Juusola, Mikko . ... P112
Juusola, Mikko I ... W4
K
Kabashi, Edor................ccoiiiiiit, P171
Kajic,Ivana ... pP284
Kameneva, Tatiana...................... P86, P113
Kamyshanska, Hanna........................ P115
Kasap, Bahadir..................cooiiats. p273
Kaschube, Matthias.................... P114, P115
Kase, Daisuke...........cooiiiiiiiiiiin ., pP212
Kath, William .......................... P116, P117

148

Kay,Kenneth ...t P66
Kay, LeslieM............cooiiiiiiiiiiia, P118
Keeley, Stephen................ ..ot P119
Keijzer, Fred. ... P120
Keller,Daniel............ccccoiiiiiiiiiian... P68
Kempter, Richard............................. P121
Kerr, CliffC ..o P122, P153
Khalig, Zayd...........ccooiiiiiiiiiat P123
Khayrulin, Sergey .............ccoiiviininn P141
Khodai, Tansi............ccoiiii ... P264
Kidd, Kirsty. . ... P236
Kim, Junhyeok .................cooiiiin.t. P127
Kim, Seunghwan ...................... P124, P127
Kim,Won Sup ... P93
Kirtay, Murat ............ ..., P190
Kitano, Katsunori..............cccovvviinnnn.. P125
Klatzmann, Ulysse ........................e. P126
Klein, Michael ............... ...t P283
Ko, Tae-WOoOK . ...t P127
Kobayashi, Ryota...................... P125, P128
Kohn, André. ..., P129
Konrad, Sara............ccoeviiiiininnnnn... P249
Koolen,Ninah................ccooiiiiio.. .. P216
Kornprobst, Pierre................. ...l P130
Kortus, Stepan ..., P299
Korvasova, Karolina.......................... P169
Kostal, Lubomir.................coi.tL. W2, P131
Kowalski, Jakub .............................. P145
Kretzberg, Jutta ...t P132
Kreuz, Thomas........................ P133, P170
Krishnan, Giri........ccooiiiiiiiii i P11
Kros, Lieke. ... P280
Kruse,Rudolf ............... ...t P134
Kueh, Daniel ... P42
Kuehn,Oliver.............ccooiiiii ... P132
Kulvicius, Tomas................ccooeen... 05, P252
Kumar, Arvind . ... P135
Kumar, Shyam ....................oieenat. p241
Kunze, Tim. ... i 013
Kurikawa, TomoKi. ..., P74
Kuriscak, Eduard................ccoovviinnn... P158
Kutschireiter, Anna.............coovviinn... P196
Kutz,J.Nathan.....................cooiiit, P229
Kuznetsov, Alexey ..................... P137, P138
L
Ladenbauer, Josef..................... P183, P185
Lagzi, Fereshteh ............................. P211
Lai, PIK-Yin. ..o P30
Lajoie, Guillaume...............coiiiiiinn... P256
Lankarany, Milad ........................ W8, P198
Lapish, Christopher.................... P137, P139
Large, Edward W. ...t P140
Larson, Stephen ...t P141
Latorre, Roberto....................... P142, P274
Lavin, Antonieta...............ciiiiiinn... P143
Lazar, Andreea..........c.cooviiiiiiinenn P266
Lazar, Aurel A. ... e W4



Lazar, Aurel A.........ccciiiiiin. P300, P301

Lee,Heonsoo.................. ... ...l P124
Lee,HyangWoon.............. ... ..oiaet. P144
Lee,JungH.........iiii i P165
Lee, Seungjun........coovviii i P144
Lee,Uncheol............. ..o, P127
Lefebre, Jeremie...........ccoiiiiiiiiiin... T1
Lefebvre, Jérémie ..., P172
Lenk, Kerstin. ..o, P106
Leski, Szymon ............... ...l T2, P145
Leuthold, ArthurC................. i, P155
Li, Brenna........ccooiiiiiiiii i 04
Li,Yinyun ... P252
Lienard,Jean...........ccooeiiiiiiineininnn... P51
Lillenstrom, Hans..................ocoivinn.s. P146
Lima, Pedro..........ooiiiii i P22
Lin, Zhanmin ............ ..., P21
Lindén, Henrik. ... P67
Lindig-Leon, A. Cecilia ....................... P207
Lindner, Benjamin....................ccoou..s. P258
Linne, Marja-Leena................ 07, P147, P148
Lisitsyn, Dmitriy ... P70
Liu,Daniel. ... P66
Lizier,Joseph T. ....................... P199, P221
Loebel, AleX.. ... P149
Loewenstein, Yonatan......................... 012
Logothetis, Nikos K ..o, P15
Lombardo, Joseph............... ... .ol P94
Lonardoni, Davide...............coiiiia, P177
Lorenzi, Christian ...............ccoviiinn. 011
Lowet, EriC.. ..ot 010
Lucas,Sarah..............ccciiiiiii i P84
Luebke, Jennifer ..., P282
Luna, Carlos ..o P47
Ly, Cheng..........ccoiiiiiii i P150
Lynn, Patrick .............. .o o P143
Lyttle, David ... P33
Lytton, Bill.........oo W6
Lytton, Willam W ......... P122, P151, P152, P153
M
Maccione, Alessandro......................... P13
Mace, Michael ........... ... ... P7
Mackwood, Owen ............cvviiineinnnnn P234
Maddess, Ted ...........cviinnn.n. P154, P278
Maki-Marttunen, TUOMO ............cvvvenn... P68
Mahan, Margaret Y .............cccoiviiinnnn.. P155
Malerba, Paola................... ..o iii, P11
Mancarci, Ogan ..., 04
Mandali, Alekhya .................... ... ... P25
Manninen, Tiina................. P147, P148, P202
Mareels, Iven. ..., P23
Marin, BOris ... P82
Marmarelis, Vasilis .............coeiiiinn... P156
Marsalek, Petr..................coout. P157, P158
Marshall, James......................... W1, P159
Martin, Christian David ....................... p222
Martinez Otero, LUiS............ovvienennn. P167

Mashour, George............ccoiviiiiiin... P127
Matias, Fernanda...................... P166, P167
Matic, Vladimir ............... ..o P216
Mato, GErman. .......ooviiiiii i P160
Mattia, Maurizio........................ W15, P161
Matveev, Victor. . ... P162
Maul,Pascale...............ccviiiiiinnn... Pi181
Maurer, ANdrew ...t P10
Mavritsaki, Eirini.............cocoiiiiii P204
Mayr, Christian.............. .. .o, P107
Mazzoni, Alberto................. P76, P163, P186
McDougal, Robert A.......................... P151
Meffin,Hamish ..................... ... .. ..., P23
Meier, Karlheinz........................... 02, P62
Meijas, Jorge ... w17
Melachrinos, Constantinos ................... P197
Mellor,Jack. ...t P267, P268
Mémoli, Facundo..............ciiiiiiinn. P43
Mengiste, Simachew ......................... P135
Menzel, Randolf................ ...t P240
Menzies, Rosemary ............cccoveveinn... P122
Merrison-Hort, Robert ......................... P17
Messer, Michael.................. oot pP217
Metzner, Christoph........................... P305
Meyer, Robert.......... ... .. il P184
Mi, Yuanyuan. ... P288
Micera, Silvestro ..............ccviiiinn.. P163
Michalikova, Martina ......................... P121
Michel, Christophe...................coiit P84
Migliore, Michele................ P152, P164, P297
Migliore, Rosanna............................ P164
Mihalas, Stefan...................... ... L. P165
Mijakowska, Zofia................. ..ol P145
Milan, AnaPaula..................coovee.... P167
Miles,Richard ................... ..ot P5
Milton, Russell........... ..., P44
Miner,Daniel............ ..o i, P265
Mirasso, Claudio....................... P166, P167
Mofakham, Sima............................. P302
Molkov, Yaroslav ... P215
Montemurro, Marcelo......................... P168
Moon, Joon-Young .........cviiiiiii i P127
Moren,Jan ..., T6, P64
Moreno-Bote, Ruben .................... W15, P57
Morozova, Ekaterina ......................... P137
Morrison, Abigail ............... ... ... . P169
Mulansky, Mario ....................... P133, P170
Mufioz-Cespédes, Alberto.................... P161
MUnro, Erin ... P264
Muresan,Raul .................ccooiiiinn... P171
Murray, Micah M. ........ ... ..o, P172
Muscinelli, Samuel ................... ... .. P78
Myroshnychenko, Maxym.............. P137, P139
N
Nachstedt, Timo....................... P254, P287
Nadim, Farzan ..................ccocoiiiinn... P173
Nair, Satish. ... 017



Nalberczak, Maria...........ccooviiiinnnn. P145

Nandi, Dipankar ..., P7
Naulaers,Gunnar...............ccoveveiinn... P216
Nawrot, Martin Paul.................... P174, P240
Ness, Torbjarn ..., P203
Netoff, Theoden | ................... F2, P83, P175
Neuman, Jeremy ..., P271
Neymotin, Samuel..................... P152, P153
Nguyen-Vu, Barbara.......................... P202
Niebur, Ernst. ... P176
Nieus, Thierry...........ccoiiiiiinn. P13, P177
Nikolic, Konstantin.....................coo. ... P178
Nolan, Matthew ............... ...t 018
Nomura, Taishin ...................... ... W10
Norris, Scott. ... P179
Novo, DereK..........oooiiiiiiiiiii. P180
Nowotny, Thomas .......... W1, P181, P182, P291
(@]
Obermayer, Klaus............... P183, P184, P185
Oddo, Calogero.......covovvii i, P186
Okamoto, Hiroshi...................cooie. L. P187
Oprisan, Sorinel A..................... P143, P180
Osamor, Victor........coovviiiiinnann.. P188, P261
Osinski, Boleslaw ................cccoiiiunet. P118
Ouanounou, Gilles..............cciiiein... P59
Ozcan, SUMeYYa . ...cviii i P21
Ozer,Mahmut............. ... o i, P189
Oztop,Erhan...................oooiina P190
P
Paik, Se-Bum...............cooiinaL. P191, P192
Palyanov, Andrey..........coiiiiiiiiiiat P141
Pamplona, Daniela........................... P130
Panzeri, Stefano................ ... ...l P193
Papadourakis, Vassilis........................ P190
Papoutsi, Athanasia.......................... P197
Parimala, Alva............... ..o it P280
Park, lMemming................ooiiiiiiia P194
Parmelee, Caitlyn. ...t P41
Pastalkova, Eva...................coiia, P108
Paulsen, Q... pP221
Pavese, Nicola. ..ot P7
Pavlidis, Paul ............ ... 04
Pena, RodrigoFo...................... P209, P210
Peterson, Andre ... P23
Petkoski, Spase ... P109
Petrini, Francesco...............ccoiiiiinn.. P163
Petrovici, Mihai A. .......... ... .. 02, P62
Pettersen, KlasH. ................... ... P68
Peyser, AleX ... w14
Pfeiffer, Michael .............................. P195
Pfister, Jean-Pascal .......................... P196
Philips,Ryan......................oi. P27, P28
Phillips, William A.......... ... ... P199
Pincet, Frederic ................ .o P298
Pirschel, Friederice........................... P132
Platkiewicz, Jonathan........................... P4
Poirazi, Panayiota..................coooiu... P197

150

Pokora, Ondrej . ....coovvvvii i P131
Polani, Daniel ..................coiiiiiii... P236
Ponce-Alvarez, Adrian......................... P57
Pons, Antonio J. ...t P75
Ponzi, Adam ............... ..., P285
Prescott, Steven A....................... W8, P198
Preuschoff, Kerstin..................coono. .. P77
Priesemann, Viola........... 03, 019, P199, P221
Prohens,Rafel ................. ... it P251
Proix, Timothée .................. 020, P109, P110
Prytkova, Tatiana....................coovuenn.. P290
Psychas, Konstantinos ....................... P301
Pu,Shusen................oiiiiiiiiii. .. P258
Puscian, Alicja .............co i P145
Q
Quax,Silvan................ccoiiiii i P260
Quilichini, Pascale .............................. P4
Quintana, Adrian ............cooiiiiii .. P82
Quoy, Mathias..................cciiiiii... P200
R
Radwanska, Kasia ...............ccviivnn. .. P145
Ramirez, Jan-Marino .......................... P48
Ramirez-Villegas, Juan F...................... P15
Raos, Vassilis............ccviiiiiiinin... P190
Raspopovic, Stanisa..............coevieinn... P163
Rasumov, Nikon ...t P56
Ratnam,Rama.......................... P38, P201
Raviv, Offi. ... e 012
Raymond, Jennifer........................... P202
Razi, Adeel..........cccoiiiiiiiiii it P246
Rebollo,Beatriz................cooviiia... P161
Remme, Michiel............ W7, P121, P203, P220
Renaud, Sylvie. ...t P111
Rentzelas, Panagiotis ........................ P204
Rich, Scott..........coiiii i P303
Richardson, Magnus................... P205, P206
Rieke, Fred............coo i 016
Rigosa, Jacopo. ..o P163
Rimbert, Sebastien........................... P207
Rinzel,John........... .o i i P119
Ritter, Petra. ... P57
Roach,James............ccviiiiiiiiiinn, P304
Roberts, James A. ... P208
Roberts,Mark..............cooiiiiiii ... 010
Roeper,Jochen............... ..o, P218
Rongala, Udaya Bhaskar..................... P186
Rooy, Marie ..., P137
Roque, AntonioC...................... P209, P210
Rostro-Gonzalez, Horacio.................... P104
Roth, Arnd ........... ... i P95
Roth, Zachary ...t P108
Rotstein,Horacio G .....................cce.t. W5
Rotter, Stefan ..., P211
Rougier, Nicolas. .................ooot T1, P212
Rubchinsky, Leonid ............................. P3
Rumbell, Tim.........cooiii P282
Rummell,Brian..............ccooiiiiio... P217



Runpel, Simon............. ...t P114

Ruohonen, Keijo .............ccooiviiint P147
Rupp, ANdré ... P213
Rut,Elias ... P214
Rybak, llya...........cooiiiiii P215
S
Sabo,Chelsea ................cciiiiin.. P159
Sakata, Shuzo.......................... P99, P264
Salmasi,Mehrdad ............................ P149
Sanchez-Vives, Maria Victoria................ P161
Sander,Leonard ... P304
Sandor,BulcsU ... P89
Santamaria, Fidel ............................ P250
Santos,Julia.............. i 014
Saudargiene, AuSra ...t P148
Scarpetta, Silvia. ... P6
Schemmel, Johannes ..................... 02, P62
Schenck, Wolfram ............................ W14
Schilbach, Andreas........................... P290
Schleimer, Jan-Hendrik....................... P219
Schmidt, Deena R...............ccviinn... P258
Schmidt, Joachim ............................. P50
Schneider, Gaby ....................... P217, P218
Schreiber, Susanne.................... P219, P220
Schroter, MS .. ... P221
Schicker, Jannis ..., P97
Schultz, Simon R .... W2, P178, P222, P223, P224
Schwabedal, Justus............coovviiiin.nt. W3
Schwalger, Tilo...........ooiiii i P79
Schwartz, Zachary .................cooooiat, P51
Schweikard, Achim................. ... ..., P305
Seamons, John Wg.................... P154, P278
Segaran,Joshua..............coiiiiiiinn, pP215
Seidenstein, AlexandraH..................... P151
Sellers, Kristin K. ... P105
Sengor, Neslihan Serap ...................... P225
Sernagor, Evelyne............. ...l P130
Shankar, Praveen ..................ccoiu. pP277
Sharifian, Fariba................. ... .ol P71
Sharpee, Tatyana ................coiiiiin.n. w2
Shaw, Kendrick............. ..o oo, P33
Shea-Brown, Eric....................... 016, P227
Shepherd, Gordon..................... P152, P153
Shih, Chi-Tin.........ccoii i P228
Shimono, Masanori............c.cooevvviinnn... P128
Shimoura, Renan...................... P209, P210
Shinn,MaX ... e F2
Shlizerman, Eli ......................... 014, P229
Sigurdsson, Torfi . ...t P217
Silver, RANQUS ..o P82
Sinha, Ankur............... i P235
Sinha, Nishant ..........................o.... P230
Sleigh, Jamie ................... P231, P232, P233
Smit,Daniel.............cciiiiiii P298
Smolinski, TomaszG................covven... P94
Song, Zhuoyi. .....coovvieiiiii .. P16, P112
Spiegler, Andreas................. 013, 020, P109

Sprekeler, Henning ................ 06, P196, P234
Spruston, Nelson................cooviennt P117
Squirrell, Daniel .......... ... ...l P168
Stamoulis, Catherine .......................... P32
Stavrinou, Maria............ccooiiiiiii ... P67
Stemmler, Martin................. ... P149
Steuber, Volker..... P235, P236, P237, P238, P280
Steur, EriK. ... pP272
Stevenson, lan............................... P239
Steyn-Ross, Alistair ...t T1
Steyn-Ross, D. Alistair. ....................... P231
Steyn-RoSs, Moira. ........cooviiii i P231
Stimberg, Marcel................. T3, 08, P19, P20
Stolyarov, Roman .......................o.L P179
Storms,Jordan C ............ ..o, P173
Strube-Bloss, Martin ......................... P240
Suffczynski, Piotr................. P73, P242, P243
Surace, SImone C............cciiiiiiinnn.. P196
Suter, Benjamin........................ P152, P153
Sweeney, Yann ... P98
Szigeti,Balazs ...l P141
T
Tabas, Alejandro ...l P213
Tam, Nicoladie D ...................... P244, P245
Tang, Jiaying .......ccoviiiii i P224
Tang, Rongxiang....................... pP246, P247
Tang, Yi-Yuan...............ccoveene. P246, P247
Tchumatchenko, Tatjana ................ P36, P249
Tebaykin, Dmitry. ... 04
Teka,Wondimu..............cooiiiiienn, P250
Telenczuk, Bartosz................c.o. ... P59, P60
Telenczuk, Maria............coiiiiiii i, 08
TerWal, Marije ..., P259
Teruel, AntONiOE. ........... ..o, P251
Tetzlaff, ChristianO5, 015, P252, P253, P254, P287
Tetzlaff, Tom .......... ... P62, P67
Tezuka, Taro ......oviiit it P255
Thivierge, Jean-Philippe...................... P256
Thoby-Brisson, Muriel ........................ pP257
Thomas, PeterJ.................... W3, P33, P258
Thoreson, Wallace..................covvinn. P41
Tiesinga, Paul ......................... P259, P260
TIUrYN, JEIZY oo P261
Toker, Lilah . ... i 04
Tompa, Tamas ..., P143
Tononi, Giulio .......cooviiiii P262
Topalidou, Meropi...........ccoiiiiiinn... pP212
Toporikova, Natalia........................... pP257
Torben-Nielsen, Benjamin.......... W7, P52, P241
Torcini, Alessandro...................... P14, P263
Torres, Joaquin J. ...........ccciiiiiiiinn.. P274
ToSiC, TamMara . .....ovvviie i P105
Toth, Tibor ... P49, P50
Toyoizumi, Tar0o. ....cove it P264
Trembleau, Alain............................. P298
Trengove, Chris......................... P61, P272
Triesch,Jochen........................ P265, P266

151



Tripathy, Shreejoy...........coooiiiiiiiia., 04
Tsaneva-Atanasova, Krasimira ... P34, P267, P268

Tuomo, Maki-Marttunen ................... 07, P45
Turner,JamesP........................ P182, P291
Turner, Maxwell .......... ... .. it 016
Tyukin, lvan ... i p272
U
Ukani, NikulH.......................... P300, P301
Uzuntarla, Muhammet........................ P189
\%
Valizadeh, Alireza...................... P269, P270
van Albada, Sacha........................ 01, P67
van den Heuvel, Martijn........................ P18
van Drongelen, Wim..................... W6, P271
van Elburg, Ronald ........................... P120
van Hook, Matthew ............................ P41
van Huffel, Sabine............................ P216
van Leeuwen, Cees..................... P61, P272
van Opstal, John.............. ...t p273
van Rossum,Mark .............. ... 018
van't Spijker, Heleen........................... P21
Vanni, SIMo ... P71
Varona,Pablo ......................... P274, P275
Vasilaki, Eleni ..., P159
Vasiliki, Eleni................c. oo W1
Veale,Richard .....................coiint. P293
Vélez, Virginia Gonzélez....................... P91
Vencovsky, Vaclav............................ P276
Venugopal, Sharmila.................... P31, P277
Vervisch,Jan. ..., P216
Vich Llompart, Catalina....................... P251
Victor,Jonathan..................cocovient. P278
Vigério, Ricardo . ................ ... ..ol P71
Vincent-Lamarre, Philippe.................... P256
Vogels, Rufin.............oooiiiii P279
Vogt, SIMON . ... P103
Volgushev, Maxim............................ P239
von der Heydt, Rudiger....................... P176
Vornanen, Inkeri. ..., P106
W
Wagatsuma, Nobuhiko ....................... P176
Wang,Da-Hui...............ooooiiiiiiiat, P281
Wang, JiSUNg .. ..ooeeieii i P124
Wang, Kaier. ... pP231
Wang, Ting-Yuan.............cooviviinennnnnns p228
Wang, Yanbin................ .. oo 09
Wang, YingxXue ..........oiiiiiiiiiiia P108
Wang, Yunpeng ... P45
Warburton, Julia................. ... oL P34
Watson, Patrick...............cciiiiiiiii.., P38
Weaver, ChristinaM...................coues. P282
Weber, Simon........... ..o 06
Wegener, Detlef ... P69
Weidel, Philipp ... P169
Weiliang, Chen........................... P54, P55
Wennekers, Thomas................... P283, P284

152

Wernecke, Hendrik ..., P88
Whitcomb, Daniel...................coooiit. P34
Wibral, Michael ........................ P199, P221
Wickens, Jeffery......... ...t P285
Wiedau-Pazos, Martina........................ P31
Willemsen, Rob. ... P21
Wilson, Marcus. .........c.cooiiieiiiiineann, P231
Wilting, Jens. ... 03
Winter, lan M. .......... i Oo11
Witoelar, Aree ... P45
Woergoetter, Florentin. 05, 015, P253, P254, P287
Wojcik, Daniel K................ccoociiiint. P286
Wrébel, Andrzej ... P243
Wrébel, BOrys .........coovviiiiinnn... P237, P238
WU, Sl P281, P288
Wunsch, Zdenek ...l P158
X
Xia, Yan. ... P288
Y
Yang, Susan Keun-Hang ..................... P290
Yates,Jacob .............ii i P194
Yavuz, Esin............coooiiiiia P181, P291
Yger, Pierre..............oooiii it T3, W13, P20
Ying, Tianlin........... .. .. . i P113
Yoshida, Masatoshi........................... P293
Yoshida, Motoharu ........................... P292
Yoshimoto, Junichiro................ccovvenn... P64
Yousif, Nada ..........ccooiiiiiiii i P7
YU, LIu-Ta0 . o P281
Yu, Yuguo ................ P294, P295, P296, P297
Z
Zachariou, Margarita.................. ... 010
Zakharov, Denis............cccoiiiiiiiinn. P138
Zalesky, ANArew ...........cooiiiiiinninnann... P18
Zang,Yunliang ... P53
Zapotocky, Martin................ W10, P298, P299
Zarei,Parvin......... ... o i P86
Zbrzeski, Adeline..................... ..., P111
Zerlaut, Yann . ... P59
Zhang,Wen ......................o... P295, P296
Zheng, PiNng.......cooiiiii P295
Zhou, Shanglin........................ P296, P297
Zhou, Yiyin ....oooiiiiiii i P300, P301
ZhoU, YU ..ot e P112
Zick, Jennifer.......... ... o i P175
Zochowski, Michal .............. P302, P303, P304
Zouridakis, George .........cii i P245
Zurowski, Bartosz ... P305
Zylberberg, Joel ............ ... .. ... 016, P227



153



CNS 2015

24th Annual Computational Neuroscience Meeting
July 18-23, Prague, Czech Republic

. Station

Husinecka
Tram 5, 9, 26 ’

Enfrance
v

Old Building (SB)

Station
W. Churchill Sq..
Bus 135

Entrance p ildi
Regé'srrcﬁon N New Building {NB)
losk 101, R
Academic Poster Session6
Club hibifion

Coffeg Bregks

Menza Building (MB)
Rajské Building (RB)

Rajsk& Building (RB)

15" Floor

I "

i lift o
Main .
Entrance 4 the Academic club
Registration Po??:- g ?-SSi RS
xhibition

Coffee Breaks

TTT

2" Floor

m[ [

B Lecture Rooms M Stairs, elevators




	Overview
	OCNS - The Organization
	General Information
	Meeting venue
	Getting to the conference
	Information for poster presentation
	Registration and locations
	Local Information
	Gala Dinner
	CNS Party
	Restaurants
	A quick break from the conference


	Program
	Tutorials
	Main Meeting
	Workshops

	Abstracts
	Tutorials
	Invited Presentations
	Contributed Talks
	Workshops

	Posters
	Poster Listing
	P1 - P102
	P103 - P205
	P206 - P305


	Appendix
	Notes
	Page Index
	Contributions Index


