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Local Info & Maps

About Downtown Decatur, GA

We invite you to discover Downtown Decatur (http://www.decaturga.com/), a city with a traditional
small college-town atmosphere along with all the benefits of living in a major metropolitan area. Decatur
is just minutes east of downtown Atlanta, minutes west of Stone Mountain, and the MARTA rail station
is right under our downtown square, so getting here is a breeze.

Named after Stephen Decatur, a 19th century U.S. Naval hero, Decatur retains a strong connec-
tion to its history (http://www.decaturga.com/index.aspx?page=91), while preparing for the fu-
ture with managed growth and responsible development. An extensive collection of art works (http:
//www.decaturga.com/index.aspx?page=94) are on display around the City. Learn more about De-
catur’s Points of Interest (http://www.decaturga.com/index.aspx?page=93) as well as community
activities, business and City government.

Directions to Decatur & Agnes Scott College
Directions from Atlanta Airport (ATL) to Downtown Decatur via MARTA subway (here is a MARTA

map https://ocns.memberclicks.net/assets/CNS_Meetings/CNS2012/martamap.pdf):

Take any train from Airport to Five Points station.

Change trains at Five Points station: take Blue Line train to Indian Creek. Get off at Decatur station.
Note: If you plan to use public transportation from the airport to Decatur, it is best to arrive at the ATL
airport no later than 9pm for international flights and 10pm for within U.S. flights.

Walking directions from MARTA station to Agnes Scott (a short three-block walking distance ~16min):
Exit the terminal on the Church St. side and turn right on Church St.

Use the pedestrian tunnel to pass beneath the railroad tracks; you will merge at the E. College Avenue
entrance to campus.

By Car from the North on |-85 (mileage approximate):

Take 1-85 to the Clairmont Road exit.

Turn left onto Clairmont Road.

Turn right onto Commerce Drive. (4.9miles) (Disregard directional sign pointing left; continue right)
Turn left onto W. Trinity Place. (0.4 miles)

Turn right onto N. McDonough Street. (0.1 miles)

Follow N. McDonough Street over the railroad to Agnes Scott College. (0.3 miles)

By Car from the East on 1-285 or |-20 (mileage approximate):

Take 1-285 to Stone Mountain Freeway, Highway 78 exit.

Go west on Highway 78 (Street name changes to Scott Boulevard.)

Turn left onto Clairmont Road. (4.1 miles)

Turn right onto Commerce Drive. (0.7 miles) (Disregard directional sign pointing left; continue right)
Turn left onto W. Trinity Place. (0.4 miles)

Turn right onto N. McDonough Street. (0.1 miles)

Follow N. McDonough Street over the railroad to Agnes Scott College. (0.3 miles)
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Restaurants Downtown Decatur
Decatur is a dining destination, attracting foodies from all across metro Atlanta to more than 80

mostly independent restaurants, cafés and pubs.

Here is a list of all Decatur restaurants http://

www.decaturga.com/index.aspx?page=577. However, we prepared for you a list of our favorites
http://goo.gl/maps/hi7n. Enjoy!

Our favorite restaurants near Agnes Scott campus in Downtown Decatur

http://goo.gl/maps/hi7n
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Sushi Avenue on the
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http://www.sushiavenuedecatur.com
131 Sycamore St., 404-378-0228,
http://www.sushiavenuedecatur.com
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Deserts & Coffee
Cakes & Ale and The
Bakery at C&A

The Chocolate Bar

Java Monkey
The Yogurt Tap
Swirlin® Twirlin®

European

Café Alsace
Fellini's Pizza
The Iberian Pig
Mellow Mushroom
No. 246

Sapori di Napoli

American
Cafeé Lily
Cakes & Ale

Carpe Diem
Eddie’s Attic

Farm Burger
Jimmy John's
Thumbs Up

Pubs & Sport Bars
Brick Store Pub
Leon’s Full Service
The Marlay House
Taco Mac

Thinking Man Tavern

Harbor Bar
Twain’s Brew Pub

Mexican
Mezcalito's

Raging Burrito
Taqueria del Sol

151 Sycamore St., 404-377-7960,
http://www.cakesandalerestaurant.com

201 W. Ponce*, 404-388-6591,
http://www.thechocolatebardecatur.com

425 Church St, 404-378-5002, http://www. javamonkeydecatur. com
419 Church St., 404-373-6090, http://www.theyogurttap.com

335 W. Ponce*, 404-941-7859, http://www.SwirlinTwirlin.com

121 E. Ponce*, 404-373-5622, http://wuw.cafealsace.net

333 Comerce Dr., 404-370-0551, http://www.fellinisatlanta.com
121 Sycamore St., 404-371-8800, http://www.iberianpigatl.com
265 Ponce*, 404-370-0008, http://www.mellowmushroom.com

129 E. Ponce*, 678-399-8246, http://www.no246.com

314 Church St., 404-371-0001,
http://www.saporidinapolipizzeria.com

308-B W. Ponce*, 404-371-9119, http://www.cafelily.com
155 Sycamore Street, Decatur, GA 30030 404-377-7994,
http://www.cakesandalerestaurant.com

105 Sycamore Pl., 404-687-9696, http://www.apresdiem.com
515-B N. McDonough St., 404-377-4976,
http://www.eddiesattic.com

410 W Ponce*, 404-378-5077, http://www.farmburger.net

335 W. Ponce*, 404-474-6999, http://www.jimmyjohns.com
174 W. Ponce*, 404-377-5623, http://www.thumbsupdiner.com

125 E. Court Sq., 404-687-0990, http://www.brickstorepub.com
131 E Ponce*, 404-687-0500, http://www.leonsfullservice.com
426 W. Ponce*, 404-270-9950, http://www.themarlayhouse.com
240 W. Ponce, 404-378-4140, http://www.tacomac.com

537 W. Howard Ave., 404-370-1717,
http://www.thinkingmantavern.com

129 Church St, 404-371-0088, http://http://harbourdecatur.com/
211 E. Trinity Pl., 404-373-0063, http://www.twains.net

653 East Lake Dr., 404-687-0007,
http://www.mezcalitoscantina.com

141 Sycamore St., 404-377-3311, http://www.ragingburrito.com
359 W. Ponce*, 404-377-7668, http://www.taqueriadelsol.com

*Note: “Ponce” is Atlanta short-hand for “Ponce de Leon Avenue”.
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Things to See in Atlanta

Atlanta (Georgia) is a Brave and Beautiful City, the Southeast's most alluring destination. Click here
http://www.atlanta.net/ to see What to Do in Atlanta!

Recommended Hotels and Things to See in Downtown Atlanta http://goo.gl/maps/Pj48
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and Decatur Stations Centennial Olympic Park
& CNS 2012 Hotel in Downtown Decatur - GeQrgla Aquar|un.1
Courtyard by Marriott Inside CNN Studio Tour .
Fernbank Museum of Natural History
a Hotels near Downtown Decatur on direct Atlanta Botanical Garden
MARTA bus line High Museum of Art
? P9 Hotels in Atlanta on direct MARTA line The Fox Theater
(bus or subway) to Agnes Scott campus, Atlanta Braves and Turner Field (not shown
grouped by price (see Google clickable on map)
map for details). Stone Mountain Park (not shown on map)

Save 51% with Atlanta CityPASS (69 USD), which gives you admission to 5 must-see Atlanta attractions:
Georgia Aquarium, World of Coca Cola, Inside CNN Studio Tour, High Museum of Art OR Fernbank
Museum of Natural History, Zoo Atlanta OR Atlanta History Center. Here is more info about the
CityPASS http://www.citypass.com/atlanta.

u Link to our Facebook Page, where you can share your CNS pictures!
http://www.facebook.com/#!/CNS2012Atlanta
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CNS*2012 Party

This year’s exclusive CNS*2012 party will be held on Monday evening at Twain’s Billiards
and Brew Pub (http://www.twains.net/), a pub located a five-minute walk from the Agnes
Scott campus. "Twain's" brews their own beer, and their beers have received several national accolades
and have been sold in partnership with several American craft breweries. “Twain’s” will be catering the
event and you will also be served a welcome drink and snacks at arrival.

Live Stand-Up Comedy at the CNS*2012 Party
"Dr. Pete" is a Georgia Tech engineering professor by day, and stand-up comedian by night,
Pete Ludovice is out to prove that nerds can be funny and not just funny looking.
His research interests include the simulation of synthetic =\S
and biological macromolecules and the use of humorous
improvisation to catalyze technical innovation.

“Feel the Power of the Dork Side” is the title of his one-
man show that is currently touring the U.S. from Boston
to San Francisco — it is a humorous look at science and
technology and its practitioners, like your science class on
nitrous oxide. Pete also has a weekly radio show and pod-
cast titled “Inside the Black Box,” whose motto is “Sci- Pete Ludovice, pete@drpetecomedy.com
ence, only funnier.” http://www.drpetecomedy.com

CNS*2012 Banquet

The banquet will take place in Evans Hall at Agnes Scott College on Tuesday, July 24th,
from 7pm till midnight. The event will start with dinner (vegetarian and gluten free options available)
followed by live music entertainment. Our Local Committee has selected for you the Savoy Kings, one
of the hottest swing bands in Atlanta playing upbeat jazz perfect for dancing. As usual, prizes will
be awarded to the best student posters during the banquet.

http://www.savoykings.com/
The Savoy Kings is one of the hottest live bands in the always hot Atlanta swing scene.
Playing live, they have built a steady following for over three years and become the center of the massive
Atlanta swing universe. Whether they're playing a Count Basie standard or a T-Bone Walker blues, it is
all Swing.
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Program

.
Timetable
Saturday 7/21 Sunday 7/22 | Monday 7/23 |  Tuesday 7/24 Wednesday 7/25 | Thursday 7/26
Tutorials Main Meeting, Presser Hall — Gaines Auditorium Workshops
9:00 Welcome & Announcements Announcements
9:10 announcements W2-Bullock, 210E W1- Bullock, 209W AB
9:20 Tutorials Keynote 2: Keynote 3: W4-Evans, Bsmt AB W3- Bullock, 210E
9:30 morning session Keynote 1: Donald Edwards | Malcolm Maciver | W5-Bullock,209W AB W6- Presser, Gaines Audit.
9:40 Barbara Webb W6-Presser, Gaines Audit. | W8- Evans, Bsmt C
9:50 Bullock Hall W7-Evans, Bsmt C W9-Bullock, G9
10:00 W9-Bullock, G9 W10- Evans, Bsmt AB
10:-10 T1 —room 102 W W11-Bullock, 102W
10:20 T2 —room 112 W Coffee Break Coffee Break
e Coffee Break Rebekah Hall Rebekah Hall
- T4 —room 209 W B
10:40 T6 — basement G 9 Rehokahlliall
10:50 Oral 012 Featured oral F3 Coffee Break Coffee Break
11:00 Oral 01 Bullock Hall Bullock Hall
11:10 Oral 013 Atrium Atrium
11:20 Oral 02
11:30 Oral 014 Oral 017 W2, W4, W5, W6 W1, W3, W6, W8,
11:40 Oral O3 W7, W9, W11 W9, W10
11:50 (same rooms) (same rooms)
12:00 Oral 04 Lunch Break OCNS
12:10 Group picture, Member meeting
Lunch Break outside Evans Lunch Break Lunch Break
12:20
12:30
12:40 Lunch Break NSF Session
13:20 Evans, Bsmt. AB
13:30 Lunch Break Lunch Break
13:40
13:45 Tutorials W2, W4, W5, W6 W1, W3, W6, W8,
13:50 afternoon session W7, W9, W11 W9, W10
14:00 Featured oral F2 (same rooms) (same rooms)
14:10 Bullock Hall Oral 05 Oral 018
14:20
14:25 | I1~—room 102W Oral 06 Oral 019
14:30 | J2—room 112W Oral 016
- T3 —room 210 E
14:40 T5 —room 209 W A
14:45 T7 — room 209 W B Oral O7 Coffee Break Oral 020
14:50 Rebekah Hall
15:00
15:10 Oral 08 Coffee Break Coffee Break
15:20 Poster session Il Rebekah Hall Bullock Hall
15:30 Oral 09 Atrium
15:40 Bullock
15:50 Coffee Break Atrium Poster session
16:00 Rebekah Hall 1
16:10 Posters 64-126
16:20 Oral 010 Bullock W2, W4, W5, W6
16:30 Atrium W7, W9, W11
16:40 Break Featured oral F1 Posters 127-189 (same rooms)
16:50
17:00
17:10
17:20 Welcome reception Oral 011
17:30
17:40 Evans Hall
17:50 Break for dinner
18:00
18:10
18:20 Break for dinner W12 - Postdoc Career
18:30 Bullock
19:30 Poster session | G9
19:50 CNS 2012
20:00 Bullock Banquet
20:50 Atrium
21:00 Posters 1-63 Evans Hall
22:30 CNS 2012 Party

24:00

at Twain’s Pub




Tutorials

Time: July 21st, 2012.
Place: Agnes Scott campus, Bullock (Science Center) building.

No. Name Time Room
T1l  Modeling and interpretation of extracellular potentials 9:00-12:00 and 102 W
13:30-16:30

T2  Theory of correlation transfer and correlation structure in ~ 9:00-12:00 and 112 W
recurrent networks 13:30-16:30

T3  Parameter Search for Neural Spiking Activity: Creation 9:00-12:00 and 210 E
and Analysis of Simulation Databases 13:30-16:30

T4  Complex networks and graph theoretical concepts 9:00-12:00 209 W B

T5  Workflows for reproducible research in computational 13:30-16:30 200 W A
neuroscience

T6  The finer points of modeling (with NEURON) 9:00-12:00 G9

T7  Real-time simulation of large-scale neural models using the 13:30-16:30 209 W B

NeoCortical Simulator (NCS)

Workshops

Time: Wednesday & Thursday, July 25-26th, 2012.
Place: Agnes Scott campus, Buildings: Presser, Evans, and Bullock.

No. Name Day Time Building Room

W1 Behavior Informatics Thu 9-18:00 Bullock 209 W A+B

W2 Computational Neuroethology Wed 9-18:00 Bullock 210 E

W3 Dynamic nature, olfactory system Thu 9-18:00 Bullock 210 E

W4  Multi-Scale Modeling Wed 9-18:00 Evans  Basement AB

W5 Methods of Systems Identification Wed 9-18:00 Bullock 209 W A+B

W6 Methods of Information Theory Wed & Thu 9-18:00 Presser  Gaines

Auditorium

W7 Evolutionary algorithms Wed 9-18:00 Evans  Basement C

W8 Principles of motor pattern generation Thu 9-18:00 Evans  Basement C

W9 Dynamics of rhythm generation Wed & Thu 9-18:00 Bullock G9

W10 Neurological disease dynamics Thu 9-18:00 Evans  Basement AB

W11 Neuromechanical modeling of posture and Wed 9-18:00 Bullock 102 W
locomotion

W12 Postdoc/early career strategy Wed 18-20:00  Bullock G9
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Tutorials

Tutorials will take place prior to the main meeting in the morning and in the afternoon of July 21st,
2012 at Agnes Scott campus, Bullock (Science Center) building.

T1

T2

T3

T4

T5

T6

Modeling and interpretation of extracellular potentials
Room 102 W, 9:00-12:00 and 13:30-16:30

Gaute T. Einevoll, Norwegian University of Life Sciences, As, Norway

Szymon Leski, Nencki Institute of Experimental Biology, Warsaw, Poland

Espen Hagen, Norwegian University of Life Sciences, As, Norway

Theory of correlation transfer and correlation structure in recurrent networks
Room 112 W, 9:00-12:00 and 13:30-16:30

Ruben Moreno-Bote, Foundation Sant Joan de Déu, Barcelona, Spain

Moritz Helias, Research Center Jiilich, Germany

Parameter Search for Neural Spiking Activity: Creation and Analysis of Simulation
Databases

Room 210 E, 9:00-12:00 and 13:30-16:30
Cengiz Gunay, Emory University, Atlanta, USA

Anca Doloc-Mihu, Emory University, Atlanta, USA

Vladislav Sekulic, University of Toronto, Canada

Complex networks and graph theoretical concepts
Room 209 W B, 9:00-12:00

Duane Nykamp, University of Minnesota, USA

Workflows for reproducible research in computational neuroscience
Room 209 W A, 13:30-16:30

Andrew P. Davison, UNIC, CNRS, Gif sur Yvette, France

The finer points of modeling (with NEURON)
Room G9, 9:00-12:00

Ted Carnevale, Yale University School of Medicine, New Haven, USA
William W. Lytton, SUNY Downstate Medical Center, NY, USA
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T7

14

Real-time simulation of large-scale neural models using the NeoCortical Simulator
(NCS)
Room 209 W B, 13:30-16:30

Laurence C. Jayet Bray, Brain Computation Laboratory, Dept. of Computer Science &

Engineering, University of Nevada, Reno, USA
Roger V. Hoang, Brain Computation Laboratory, Dept. of Computer Science & Engineering,

University of Nevada, Reno, USA
Frederick C. Jr. Harris, Brain Computation Laboratory, Dept. of Computer Science & Engi-

neering, University of Nevada, Reno, USA



Main Meeting

Main meeting will take place from July 22 - 24th, 2012 at Agnes Scott campus. All sessions will
be held in Presser Hall, Gaines Auditorium, unless specially stated.

Saturday July 21

Opening Reception (Evans Hall)

Sunday July 22

17:00 — 21:00
9:00 - 9:20

0:20 — 10:20 K1
10:20 — 10:50
10:50 - 11:10 O1
11:10 - 11:30 02
11:30 - 11:50 O3
11:50 — 12:10 04
12:10 — 12:20
12:10 — 14:00

Welcome & Announcements

Keynote Lecture:

FRONTIERS LECTURE Neurons and behaviour: computational and
robot models of insect sensorimotor control
Barbara Webb

Break

Oral Session I: Oscillations

Experimentally constrained network model of hippocampal fast-firing
parvalbumin-positive interneurons

Katie Ferguson*, Carey Huh, Bénédicte Amilhon, Rosanah Murugesu, Sylvain
Williams, and Frances Skinner

A Dynamical Study of Pulse-Coupled Oscillators in the Brain

Tanushree Luke*, Ernest Barreto, and Paul So

Oxygen Dynamics during in Vitro Seizures

Yina Wei*, Ghanim Ullah, Justin Ingram, and Steven Schiff

Does CaMKII decode Ca2+ oscillations?

Thiago M Pinto*, Maria Schilstra, and Volker Steuber

Group picture

Break for Lunch
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14:00 — 14:20
14:20 — 14:40
14:40 - 15:00
15:00 — 15:20
15:20 — 15:40
15:40 - 16:10
16:10 — 16:30
16:30 — 17:10
17:10 - 17:30
17:30 — 19:30
19:30 — 22:30

16

05

06

o7

08

09

010

F1

011

Oral session Il: Sensory systems

Modeling the Dynamics of Neural Codes in the Olfaction of the
Manduca-sexta Moth

Eli Shlizerman*, Jeff Riffell, and J Nathan Kutz

Estimating Receptive Fields and Spike-Processing Neural Circuits in
Drosophila

Aurel A. Lazar, Yevgeniy Slutskiy*

Spatiotemporal pattern discrimination using predictive dynamic neural
fields

Jean-Charles Quinton*, Bernard Girau

Predicting Eye Movements in a Contour Detection Task

Udo Ernst*, Nathalie van Humbeeck, Nadine Schmitt, Frouke Hermens, and Johan
Wagemans

Neuronal Synchronization and Multiscale Information Representation
Meyer Pesenson*

Break

Oral session lll: Anesthesia and sleep

fMRI correlates for low frequency local field potentials appear as a spa-
tiotemporal dynamic under multiple anesthetic conditions

Garth Thompson*, Wen-Ju Pan, Matthew Magnuson, Dieter Jaeger, and Shella
Keilholz

Featured Oral:

Chaotic dynamics underpins the slow oscillation of general anesthesia
and nonREM sleep

Moira L. Steyn-Ross, D. Alistair Steyn-Ross*, and Jamie Sleigh

Acetylcholine and synaptic homeostasis

Christian Fink*, Victoria Booth, and Michal Zochowski

Break for Dinner

Poster Session |: Posters 1 — 63



Monday July 23

9:00 - 9:10

9:10 - 10:10 K2
10:10 - 10:40
10:40 — 11:00 012
11:00 - 11:20 013
11:20 — 11:40 014
11:40 — 13:45
12:30 - 13:30 M1
13:45 — 14:25 F2
14:25 — 14:45 Q16
14:45 — 15:00
15:00 — 18:00
18:00 — 20:00
20:00 - 24:00

Announcements

Keynote Lecture:

Neuromechanical simulation and hybrid systems: approaches to under-
standing the role of reafference in posture and locomotion
Donald Edwards

Break

Oral session IV: Navigation

Goal-Related Navigation of a Neuromorphic Virtual Robot

Laurence Jayet Bray*, Emily Barker, Gareth Ferneyhough, Roger Hoang, Bobby
Bryant, Sergiu Dascalu, and Frederick C Harris

A Neural Network Based Holistic Model of Ant Route Navigation

Bart Baddeley, Paul Graham, Philip Husbands, and Andy Philippides*

Oral session V: Memory

Balanced cortical microcircuitry for maintaining short-term memory
Sukbin Lim*, Mark S. Goldman
Break for Lunch

NSF: Theory and Applications
Ken Whang*

Oral session VI: Leeches

Featured Oral:

Utilizing multi-functional neuronal responses during different behaviors
to uniquely identify all neurons in the leech ganglion.

Edward Frady*, William B. Kristan

Individual differences in leech heart motor neuron models

Damon Lamb*, Ronald L Calabrese

Break

Poster session ll: Posters 64 — 126

Break for Dinner

CNS 2012 Party at Twain's Pub
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Tuesday July 24

9:00 - 9:10
9:10 — 10:10 K3
10:10 — 10:40
10:40 - 11:20 F3
11:20 — 11:40 O17
11:40 — 12:40
12:40 — 14:00
14:00 — 14:20 018
14:20 — 14:40 019
14:40 — 15:00 020
15:00 — 15:30
15:30 — 18:30
18:30 — 24:00
Wed.

18

Announcements

Keynote Lecture:

Energy-Information Trade-Offs Between Movement and Sensing

Malcolm Maciver
Break

Oral session VII: Electric fish

Featured Oral:

Signal cancellation and contrast invariance in electrosensory systems
Jorge F Mejias*, Gary Marsat, Kieran Bol, Erik Harvey-Girard, Leonard Maler, and
Andre Longtin

Parallel coding of first and second order stimulus attributes

Patrick Mcgillivray, Katrin Vonderschen, Eric Fortune, and Maurice J Chacron*
OCNS Member Meeting

Break for Lunch

Oral session VI

Short term synaptic depression with stochastic vesicle dynamics imposes
a high-pass filter on presynaptic information

Robert Rosenbaum*, Jonathan Rubin, and Brent Doiron

Drug-dominated dopamine circuits spiral addicts down to a cogni-
tive/behavioral conflict: A neurocomputational theory

Mehdi Keramati, Boris Gutkin*

The Open Source Brain Initiative: enabling collaborative modelling in
computational neuroscience

Padraig Gleeson*, Eugenio Piasini, Sharon Crook, Robert Cannon, Volker Steuber,
Dieter Jaeger, Sergio Solinas, Egidio d'Angelo, and Angus Silver

Break

Poster session lll: Posters 127 — 189

CNS 2012 Banquet (ticket required) (Evans)

July 25 & Thu. July 26: Workshops, 9:00 - 18:00




Workshops

Place: Agnes Scott campus, Presser, Evans, and Bullock buildings. Time: July 25-26, 2012.

W1

W2

W3

W4

W5

W6

Behavior Informatics: data bases, data mining and experiments in virtual worlds
Bullock, Room 209 W A+B, Day(s): Thu, 9:00:18:00

Ansgar Koene, RIKEN BSI, Tokyo, Japan

Computational Neuroethological Approaches to Problems in Social Neuroscience
Bullock, Room 210 E, Day(s): Wed, 9:00:18:00

Robert Liu, Emory University, Atlanta, GA, USA

Elizabeth Buffalo, Emory University, Atlanta, GA, USA

Examining the dynamic nature of neural representations with the olfactory system
Bullock, Room 210 E, Day(s): Thu, 9:00:18:00

Christopher Buckley, RIKEN BSI, Tokyo, Japan

Taro Toyizumi, RIKEN BSI, Tokyo, Japan

Thomas Nowotny, University of Sussex, Sussex, UK

Multi-Scale Modeling in Computational Neuroscience Il: Challenges and Opportuni-
ties

Evans, Room Basement AB, Day(s): Wed, 9:00:18:00

James Bower, UTSA, San Antonio, Texas, USA

llya Rybak, Drexel University, Philadelphia, PA, USA

Methods of Systems Identification for Studying Information Processing in Sensory
Systems

Bullock, Room 209 W A+B, Day(s): Wed, 9:00:18:00

Aurel Lazar, Columbia University, New York, NY, USA

Mikko Juusola, University of Sheffield, Sheffield, UK

Methods of Information Theory in Computational Neuroscience
Presser, Room Gaines Auditorium, Day(s): Wed & Thu, 9:00:18:00

Todd Coleman, UCSD, San Diego, CA, USA

Michael Gastpar, EPFL, Lausane, Switzerland

Conor Houghton, Trinity College, Dublin, Ireland

Aurel Lazar, Columbia University, New York, NY, USA

Simon Schultz, ICL, London, UK

Tatyana Sharpee, Salk Institute, San Diego, USA
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W7  Modern evolutionary algorithms in computational neuroscience : tools to parame-
terize, explore model properties & design model structures

Evans, Room Basement C, Day(s): Wed, 9:00:18:00

Benoit Girard, UPMC/CNRS, Paris, France

Denis Sheynikhovich, UPMC/CNRS, Paris, France
Jean-Baptiste Mouret, UPMC/CNRS, Paris, France
Stephane Doncieux, UPMC/CNRS, Paris, France

W8  Principles of motor pattern generation: experiments and modeling
Evans, Room Basement C, Day(s): Thu, 9:00:18:00
Carmen Canavier, LSU HSC, New Orleans, LA, USA
Andrey Shilnikov, GSU, Atlanta, USA

W9  Dynamics of rhythm generation
Bullock, Room G9, Day(s): Wed & Thu, 9:00:18:00

Roman Borisyuk, University of Plymouth, Plymouth, UK

Ronald Calabrese, Emory University, Atlanta, GA
Alan Roberts, University of Bristol, Bristol, UK
Gennady Cymbalyuk, Georgia State University, Atlanta, GA

W10 Disease dynamics: Computational modeling of neurological diseases
Evans, Room Basement AB, Day(s): Thu, 9:00:18:00
Sharmila Venugopal, UCLA, Los Angeles, CA, USA
Ranu Jung, FIU, Miami, FL, USA

W11 Neuromechanical modeling of posture and locomotion
Bullock, Room 102 W, Day(s): Wed, 9:00:18:00

Boris I. Prilutsky, Georgia Institute of Technology, Atlanta, GA, USA
Alexander N. Klishko, Georgia Institute of Technology, Atlanta,GA, USA

W12 Postdoc and Student Career Strategy Workshop
Bullock, Room G9, Day(s): Wed, 18:00:20:00

Nathan W. Schultheiss, Boston University, Boston, MA, USA
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Abstracts

Tutorials

T1 Modeling and interpretation of extracellular potentials
Room 102 W, 9:00-12:00 and 13:30-16:30

Gaute T. Einevoll, Norwegian University of Life Sciences, As, Norway

Szymon Leski, Nencki Institute of Experimental Biology, Warsaw, Poland

Espen Hagen, Norwegian University of Life Sciences, As, Norway

While extracellular electrical recordings have been the workhorse in electrophysiology, the interpretation
of such recordings is not trivial. The recorded extracellular potentials in general stem from a complicated
sum of contributions from all transmembrane currents of the neurons in the vicinity of the electrode
contact. The duration of spikes, the extracellular signatures of neuronal action potentials, is so short that
the high-frequency part of the recorded signal, the multi-unit activity (MUA), often can be sorted into
spiking contributions from the individual neurons surrounding the electrode. However, no such simplifying
feature aids us in the interpretation of the low-frequency part, the local field potential (LFP). To take
a full advantage of the new generation of silicon-based multielectrodes recording from tens, hundreds or
thousands of positions simultaneously, we thus need to develop new data analysis methods grounded in
the underlying biophysics. This is the topic of the present tutorial.

In the first part of this tutorial we will go through

e the biophysics of extracellular recordings in the brain,

e a scheme for biophysically detailed modeling of extracellular potentials and the application to mod-
eling single spikes [1-3], MUA [4] and LFP, both from single neurons [5] and populations of neurons
[4,6], and

e methods for
— estimation of current source density [7] from LFP data, such as the iCSD [8-10] and kCSD
methods [11], and

— decomposition of recorded signals in cortex into contributions from various laminar populations,
i.e., (i) laminar population analysis (LPA) [12] based on joint modeling of LFP and MUA, and
(i) a novel scheme using LFP and known constraints on the synaptic connections [13]

In the second part the participants will get demonstrations and hands-on experience with

e LFPy (compneuro.umb.no/LFPy), a versatile tool based on Python and the simulation program
NEURON [14] (www.neuron.yale.edu) for calculation of extracellular potentials around neurons,
and
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e tools for iCSD analysis, in particular,

— CSDplotter (for linear multielectrodes [8]) (software.incf.org/software/csdplotter)
— iCSD 2D (for 2D multishank electrodes [10]) (software.incf.org/software/icsd-2d)

References:

. G Holt & C Koch (1999). J Comp Neurosci 6:169.

. J Gold et al (2006). J Neurophysiol 95:3113.

. KH Pettersen and GT Einevoll (2008). Biophys J 94:784.
. KH Pettersen et al (2008). J Comp Neurosci 24:291.

. H Lindén et al (2010). J Comp Neurosci 29: 423.

. H Lindén et al (2011). Neuron 72:859.

. C Nicholson and JA Freeman (1975). J Neurophsyiol 38:356.
. KH Pettersen et al (2006). J Neurosci Meth 154:116.

. S teski et al (2007). Neuroinform 5:207.

10. S teski et al (2011). Neuroinform 9:401.

11. J Potworowski et al (2012). Neural Comp 24:541.

12. GT Einevoll et al (2007). J Neurophysiol 97:2174.

13. SL Gratiy et al (2011). Front Neuroinf 5:32.

14. ML Hines et al (2009). Front Neuroinf 3:1.
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T2 Theory of correlation transfer and correlation structure in recurrent networks
Room 112 W, 9:00-12:00 and 13:30-16:30

Ruben Moreno-Bote, Foundation Sant Joan de Déu, Barcelona, Spain

Moritz Helias, Research Center Jiilich, Germany

In the first part, we will study correlations arising from pairs of neurons sharing common fluctuations
and/or inputs. Using integrate-and-fire neurons, we will show how to compute the firing rate, auto-
correlation and cross-correlation functions of the output spike trains. The transfer function of the output
correlations given the inputs correlations will be discussed. We will show that the output correlations
are generally weaker than the input correlations [Moreno-Bote and Parga, 2006], that the shape of the
cross-correlation functions depends on the working regime of the neuron, and that the output correlations
strongly depend on the output firing rate of the neurons [de la Rocha et al, 2007]. We will study
generalizations of these results when the pair of neurons is reciprocally connected.

In the second part, we will consider correlations in recurrent random networks. Using a binary neuron
model [Ginzburg & Sompolinsky 1994], we explain how mean-field theory determines the stationary state
and how network-generated noise linearizes the single neuron response. The resulting linear equation
for the fluctuations in recurrent networks is then solved to obtain the correlation structure in balanced
random networks. We discuss two different points of view of the recently reported active suppression
of correlations in balanced networks by fast tracking [Renart 2010] and by negative feedback [Tetzlaff
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2010]. Finally, we consider extensions of the theory of correlations of linear Poisson spiking models
[Hawkes 1971] to the leaky integrate-and-fire model and present a unifying view of linearized theories of
correlations [Helias 2011].

At last, we will revisit the important question of how correlations affect information and vice-versa [Zohary
et al, 1994] in neuronal circuits, showing novel results about information content in recurrent networks
of integrate-and-fire neurons [Moreno-Bote and Pouget, Cosyne abstracts, 2011].

References:

1. Ginzburg & Sompolinsky (1994). Theory of correlations in stochastic neural networks, PRE 50:3171-
3190.

2. Renart et al. (2010). The Asynchronous State in Cortical Circuits, Science 327(5965):587-590.

3. Tetzlaff et al. (2010). Decorrelation of low-frequency neural activity by inhibitory feedback, BMC
Neuroscience 11(Suppl 1):011.

4. Hawkes (1971). Point Spectra of Some Mutually Exciting Point Processes, Journal of the Royal
Statistical Society Series B 33(3):438-443.

5. Helias et al. (2011). Towards a unified theory of correlations in recurrent neural networks, BMC
Neuroscience 12(Suppl 1):P73.

6. Shadlen & Newsome (1998). The variable discharge of cortical neurons: implications for connectivity,
computation, and information coding, J Neurosci 18:3870-96.

7. Moreno-Bote & Parga (2006). Auto- and crosscorrelograms for the spike response of leaky integrate-
and-fire neurons with slow synapses, PRL 96:028101.

8. de la Rocha et al. (2007). Correlation between neural spike trains increases with firing rate, Nature
448:802-6.

9. Zohary et al. (1994). Correlated Neuronal Discharge Rate and Its Implications for Psychophysical
Performance, Nature 370:140-14, Complex networks and graph theoretical concepts.

T3 Parameter Search for Neural Spiking Activity: Creation and Analysis of Simulation
Databases

Room 210 E, 9:00-12:00 and 13:30-16:30

Cengiz Gunay, Emory University, Atlanta, USA
Anca Doloc-Mihu, Emory University, Atlanta, USA
Vladislav Sekulic, University of Toronto, Canada

Parameter tuning of model neurons to achieve biologically realistic spiking patterns is a non-trivial task,
for which several methods have been proposed. One method is to perform a systematic search through a
very large parameter space (with thousands to millions of model instances), and then categorize spiking
neural activity characteristics in a database [1-8]. This technique is of key importance because of the
existence of multiple parameter sets that give similar dynamics, both experimentally and in silico — i.e.
there is no single "correct" model. In this tutorial, we will teach some of the implementations of this
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method (e.g., the PANDORA Matlab Toolbox [6,11]) used in recent projects for tuning models of rat
globus pallidus neurons [5,9], lobster pyloric network calcium sensors [7,10], leech heart interneurons
[8,12] and hippocampal O-LM interneurons (Skinner Lab, TWRI/UHN and Univ. Toronto).

The tutorial will be composed of three parts that will include the following topics:

1. Running simulations for systematic parameter search

Model complexity versus simulation time trade off (single compartment versus full morphology;
how many channels to include?)

Working with Hodgkin-Huxley type ion channels and morphological reconstructions (e.g., de-
termining dendritic distributions of lh channels in hippocampal O-LM interneurons)

Determining ranges for channel, synapse, and morphology parameters

Setting up simulations and storage to accommodate a large number of output files
Examples using GENESIS, NEURON and custom C/C++ simulators

Control of simulations on high-performance clusters

Troubleshooting common pitfalls

2. Extracting of activity characteristics and constructing of databases

Measuring spike shape, firing rate and bursting properties
Analyzing large number of simulation output files
Standardizing feature extraction and error handling

Examples using Matlab, Java and shell scripting languages

3. Analysis of information in databases

Calculating histograms, correlations, etc.

Ranking simulations based on similarity to recordings
Multivariate parameter analysis

Data mining methods

Visualization (e.g., dimensional stacking)

Higher order methods (e.g., factor and principal component analyses)

Each of these parts will have time allocated for Q&A and interaction with the audience. If participants
bring a laptop pre-loaded with Matlab, they can follow some of our examples.

References:

1. Prinz AA, Billimoria CP, and Marder E (2003). Alternative to hand-tuning conductance-based models:
Construction and analysis of databases of model neurons. J Neurophysiol, 90:3998-4015.

2. Prinz AA, Bucher D, and Marder E (2004). Similar network activity from disparate circuit parameters.
Nat. Neurosci. 7(12): 1345-1352.
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3. Calin-Jageman RJ, Tunstall MJ, Mensh BD, Katz PS, Frost WN (2007) Parameter space analysis sug-
gests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98:2382-2398.
4. Lytton WW, Omurtag A (2007). Tonic-clonic transitions in computer simulation. J Clin Neurophysiol.
24(2):175-81.

5. Giinay C, Edgerton JR, and Jaeger D (2008). Channel density distributions explain spiking variability
in the globus pallidus: A combined physiology and computer simulation database approach. J. Neurosci.,
28(30): 7476-91.

6. Giinay C, Edgerton JR, Li S, Sangrey T, Prinz AA, and Jaeger D (2009). Database analysis of simulated
and recorded electrophysiological datasets with PANDORA's Toolbox. Neuroinformatics, 7(2):93-111.
7. Giinay C, and Prinz AA (2010). Model calcium sensors for network homeostasis: Sensor and readout
parameter analysis from a database of model neuronal networks. J Neurosci, 30:1686— 1698.

8. Doloc-Mihu A, and Calabrese RL (2011). A database of computational models of a half-center
oscillator for analyzing how neuronal parameters influence network activity. J Biol Phys 37(3): 263-283.

Model and Software Links:

9. Rat globus pallidus neuron model (https://senselab.med.yale.edu/modeldb/ShowModel.asp?
model=114639)

10. Lobster stomatogastric ganglion pyloric network model
(http://senselab.med.yale.edu/ModelDB/showmodel . asp?model=144387)

11. PANDORA Matlab Toolbox (http://software.incf.org/software/pandora)

12. Half-Center Oscillator model database

(http://senselab.med.yale.edu/ModelDB/Showlodel . asp?model=144518)

T4 Complex networks and graph theoretical concepts
Room 209 W B, 9:00-12:00

Duane Nykamp, University of Minnesota, USA

Increasing evidence suggests a structure in the brain’s networks that isn't well described by standard
random graph models. Such findings open up the debate whether or not the networks in the brain are
"small world" or "scale-free," contain central well-connected "hubs," are highly "clustered" or "modular."
But, how does ones interpret the significance of this supposedly "non-random" structure? Can we
determine how such network features influence the dynamics of neuronal networks? In this tutorial,
we will introduce basic graph theoretical concepts and their application to complex networks. We will
examine experimental findings about network structure in the brain and discuss the potential of the graph
theoretical framework on shedding light on the function of neural circuits.

T5 Workflows for reproducible research in computational neuroscience
Room 209 W A, 13:30-16:30

Andrew P. Davison, UNIC, CNRS, Gif sur Yvette, France
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Reliably repeating previous experiments, one of the cornerstones of the scientific method, ought to be easy
in computational neuroscience, given that computers are deterministic, not suffering from the problems of
inter-subject and trial-to-trial variability that make reproduction of biological experiments so challenging.
In general, however, it is not at all easy, especially when running someone else’s code, or when months
or years have elapsed since the original experiment.

The failure to routinely achieve replicability in computational neuroscience (probably in computational
science in general, see Donoho et al., 2009 [1]) has important implications for both the credibility of
the field and for its rate of progress (since reuse of existing code is fundamental to good software
engineering). For individual researchers, as the example of ModelDB has shown, sharing reliable code
enhances reputation and leads to increased impact.

In this tutorial we will identify the reasons for the difficulties often encountered in reproducing computa-
tional experiments, and some best practices for making our work more reliable and more easily reproducible
by ourselves and others (without adding a huge burden to either our day-to-day research or the publication
process).

We will then cover a number of tools that can facilitate a reproducible workflow and allow tracking the
provenance of results from a published article back through intermediate analysis stages to the original
models and simulations. The tools that will be covered include Git [2], Mercurial [3], Sumatra [4] and
VisTrails [5].

References:

1. Donoho et al. (2009). 15 Years of Reproducible Research in Computational Harmonic Analysis,
Computing in Science and Engineering 11: 8-18. doi:10.1109/MCSE.2009.15.

2. http://git-scm.com/

3. http://mercurial.selenic.com/

4. http://neuralensemble.org/sumatra

5. http://www.vistrails.org/

T6 The finer points of modeling (with NEURON)
Room G9, 9:00-12:00

Ted Carnevale, Yale University School of Medicine, New Haven, USA
William W. Lytton, SUNY Downstate Medical Center, NY, USA

This tutorial will focus on practical aspects of constructing and using models of cells and networks that
will help modelers improve their productivity and the quality of their models. We will cover topics that
include efficient strategies for specifying model properties, tactics and tools for debugging, and what
we judge to be important, if sometimes overlooked, aspects of hoc, Python, and NMODL. This is not
an "introductory" course—attendees are assumed to be familiar with using hoc or Python to develop
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NEURON models of cells or networks. Applicants with a strong interest in specific questions or topics
are encouraged to email suggestions to ted dot carnevale at yale dot edu before June 16, 2012.

T7 Real-time simulation of large-scale neural models using the NeoCortical Simulator
(NCS)

Room 209 W B, 13:30-16:30

Laurence C. Jayet Bray, Brain Computation Laboratory, Dept. of Computer Science &
Engineering, University of Nevada, Reno, USA

Roger V. Hoang, Brain Computation Laboratory, Dept. of Computer Science & Engineering,
University of Nevada, Reno, USA

Frederick C. Jr. Harris, Brain Computation Laboratory, Dept. of Computer Science & Engi-
neering, University of Nevada, Reno, USA

This tutorial will mostly concentrate on how to design large-scale models using the NeoCortical Simulator
(NCS), and to run simulations in real-time.

This is an introductory course for attendees who wish to learn a new simulation program, which emphasizes
the construction, the simulation, and the analysis of current brain models. Additional information will be
given on distribution capabilities, levels of abstraction, software and hardware platforms, possible real-time
virtual robotic applications, and how does NCS differ from other simulation programs.

Current research has demonstrated a recent software optimization and hardware improvements, which
have helped increase simulation speed and ameliorate the robustness of complex brain models.

NCS requires NO computer programming experience.

Applicants with further questions are welcome to contact Laurence at ljayet at cse dot unr dot edu.
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Keynote Lectures

Barbara Webb

Institute for Perception, Action and Behaviour, School of Informatics, University
of Edinburgh, UK

E-mail: bwebb@inf.ed.ac.uk

K1 — FRONTIERS LECTURE Neurons and behaviour: computational and
robot models of insect sensorimotor control

Neural circuits evolved to control behaviour, so behaviour should always be the context when we try to
understand what a neural circuit computes. One way to maintain this focus is to embody computational
models of neural processing in robots that sense and act. Another is to investigate circuits for which it
is plausible to connect the properties of individual neurons to the production of adaptive behaviour. The
work | will describe combines these approaches by building models of insect sensorimotor behaviours and
testing them in robotic implementations. In many cases, these supposedly simple and specialised circuits
have properties that provide wider insights into higher cognition. | will discuss recent work on navigation
and learning in insects to illustrate these issues.
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Donald Edwards

I Neuroscience Institute, Georgia State University, Atlanta, USA

' l E-mail: dedwards@gsu.edu

K2 — Neuromechanical simulation and hybrid systems: approaches to un-
derstanding the role of reafference in posture and locomotion

A major challenge in studying the neural control of posture and locomotion in legged, multi-jointed
animals is to reconcile the synaptic and cellular responses obtained from anesthetized, restrained, and
dissected preparations with the EMG and limb movement data obtained from freely behaving animals.
This challenge is compounded by the importance of reafference in modulating locomotor output, especially
in legged animals, for which step-wise variations in the terrain can demand cycle-to-cycle changes in the
output. We are meeting this challenge in our study of crayfish locomotion with three approaches: in vivo
motion analysis and EMG recordings, neuromechanical simulation with AnimatLab, and a hybrid system
consisting of an in vitro preparation and neuromechanical simulation that closes the sensorimotor feedback
loop. Motion analysis and EMG recordings reveal the motor patterns that underlie reflex responses to
perturbation while the animal stands and walks. How those motor patterns are produced and lead to the
recorded leg and body movements are what needs to be explained by neuromechanical simulation and
in vitro experiments. We have used the neuromechanical simulator AnimatLab (www.AnimatLab.com)
to reconstruct the body, including the exoskeleton, joints, muscles, and sensors, and the relevant neural
circuits in a neuromechanical model of the crayfish situated in a virtual physical world. The model can
then be tested to determine whether experimentally identified neural mechanisms of control are sufficient
to account for the EMG and movement patterns recorded in vivo. The hybrid system allows a dissected
ventral nerve cord and single leg preparation to be connected to a neuromechanical model of the leg,
muscles, and sensors to create an in vitro preparation in which the sensorimotor feedback loops can be
closed. Recorded spikes from identified levator and depressor motor neurons excite model levator and
depressor muscles to evoke leg movements in real time. Movements of the leg then stretch and release a
model stretch receptor; the calculated length changes then mechanically drive the real stretch receptor to
create the same length changes in real time. The spiking responses of the live stretch receptor afferents
then project back to the ventral nerve cord to complete the sensorimotor feedback loop. This talk will
describe each of these approaches, and relate how closing the feedback loop enables reflex reversal to
increase the walking locomotor frequency by three-fold.
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Malcolm Maciver

Dept. of Biomedical & Mechanical Engineering, Northwestern University, Ev-
aston, USA

E-mail: maciver@northwestern.edu

K3 — Energy-Information Trade-Offs Between Movement and Sensing

Weakly electric fish are a popular model system within sensory neurobiology. More recently, our group
and others have been working on their biomechanics, and we have found many ways in which the sensory
biology of electric fish is interwoven with their biomechanics. In my talk, | will show how the fish’s
omnidirectional sensing is complemented with a biomechanical plant that is nonholonomic but nonetheless
able to reach all parts of the omnidirectional sensory space within 3-4 sensorimotor delay time cycles of the
organism. A robotic weakly electric fish and fully resolved 3D Navier Stokes simulations are elucidating
the mechanistic principles underlying this remarkable small-time maneuverability. An energetics approach
shows that when sensory performance and locomotory performance are in conflict, they are co-optimized.
Quantifying the sensory volumes and time-limited movement spaces of aquatic animals has highlighted
the vastly different sensory biophysics of water versus air. This difference may have been important for
the evolution of neural mechanisms of planning (one form of consciousness) in vertebrates through greatly
increasing the ratio of the active sensory space to the time-limited movement space of early tetrapods.
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F1 Chaotic dynamics underpins the slow oscillation of general anesthesia and nonREM
sleep
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Electrical recordings of brain activity show that entry into anesthetic unconsciousness is signposted by
the emergence of large, slow oscillations of electrical activity (71 Hz) that appear very similar to the
slow waves observed in natural sleep. In this phase, populations of cortical neurons periodically switch
between hyperpolarized inactivity (“down” state), and wake-like depolarized activation (“up” state) [1].
The origin of the slow oscillation has not yet been unambiguously established, and remains an area of
intense research and debate [2,3]. Here we suggest a novel mechanism in which the up- and down-states
are generated spontaneously by emergent chaotic waves of spatiotemporal activity that sweep the cortex.
We present a mean-field model of the cortex in which populations of neurons are densely interlinked by
both chemical synapses - including idealized long-range spatially heterogeneous connections - and by direct
electrical connections forming a continuous network of interneuronal gap junctions.  Anesthetic effect is
modeled as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic
potential. We explore model dynamics in the vicinity of a general-anesthetic induced transition from wake
to coma. In this region the system is poised at a codimension-2 point where competing Turing (spatial)
and Hopf (temporal) instabilities co-exist. We argue that normal functioning of the resting “default-
wake” brain requires a delicate balance between these instabilities. Reduction of gap-junction diffusivity
disturbs the balance in favor of the Hopf instability, eventually predicting global seizure in the limit of
severe imbalance. Our cortical model predicts that introduction of anesthetic to the awake brain will force
a subtle rebalancing of dynamic pressures resulting in a coma state that is characterized by emergent
low-frequency oscillations whose dynamics is chaotic in time and space: see Fig. 1. We quantify cortical
dynamics in terms of a phase coherence measure and demonstrate that the model-predicted turbulent
slow-wave state is characterized by low phase coherence. This prediction is supported by clinical studies
of phase synchronization changes in EEG during induction of propofol anesthesia [4].

Conclusion

A spontaneous, spatiotemporally chaotic state - generated by nonlinear Turing—Hopf interaction - is the
underlying mechanism for the slow oscillation observed in general anesthesia. A similar transition to
low-frequency chaos may also occur in natural nonREM sleep, and if so, may have significant implications
for synaptic downscaling and memory processing hypothesized to occur during deep sleep.

Figure 1: Spontaneous slow-wave oscillations in cortical firing-rate VALl

patterns during 20 s of simulated anesthesia. Traces were recorded SN LI
from five equally-spaced points lying along the midline of the AL AN

25-x25-cm simulated cortical grid. Time-series are chaotic in space AN

and time. 10s
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F2 Utilizing multi-functional neuronal responses during different behaviors to uniquely
identify all neurons in the leech ganglion.
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In the leech, we can observe several behaviors —
swimming, crawling, shortening, and
local-bending — while imaging neuronal activity
with voltage-sensitive dyes (VSD) [1]. To
understand the underlying neural mechanisms of
these behavioral pattern generators, we must
understand the functional properties of the
neurons and the connectivity between neurons,
which requires collecting and synthesizing data
across several animals. However, this synthesis is
not trivial because more than 70% of the neurons
in the leech ganglia have not been identified. We
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o
F
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have created a system which utilizes the N,
functional responses of each neuron during these

behaviors, as well as during unconventional Figure 1: The ventral aspect of the leech
stimulations, to match homologous pairs of ganglion is shown with many of the known cells
neurons across different animals. Neurons in the highlighted in color. About two-thirds are

leech are almost all multi-functional, in that they unknown, indicated in white. Several VSD

are involved in many different behaviors. For a recordings of cells are shown in green.
particular neuron, we can use these Simultaneous intracellular recordings are shown
multi-functional responses as a tag indicating the in black for the Retzius cell and cell 169.

neuron’s identity.

For instance, a neuron in the central packet on the ventral surface can be identified from its neighbors
because it oscillates in phase with the dorsal contraction during swimming, and out of phase with the
dorsal contraction during crawling. We have developed an algorithm that efficiently combines all of
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these functional properties as well as each neuron’s morphological properties (soma size and position) to
match homologous cells across animals. We have recently developed a new VSD [2] that has given us
unprecedented signal-to-noise ratio and temporal resolution of neural activity. This allows us to use cues
such as action-potential shape and response timing as further indicators of neuronal identity. Figure 1
shows VSD recordings of several neurons that can now be identified based on their action potentials —
such as the Retzius, Leydig, and N cell, or based on response to stimulations — such as the rapid response
of the AP cell or the oscillations of cell 169 during swimming. We have used these functional features to
identify almost every neuron in ganglion 10 by matching homologs across many different animals. Each
animal reveals a different subset of all neurons in the circuit, which are all combined to identify virtually
every cell in the leech ganglion. We have used several statistical functional connectivity techniques to
estimate the connection profile of these neurons. With these connectivity predictions, we can probe
identified cells with micro-electrodes to validate connections and build up the leech connectome with the
knowledge of all of the neurons in the circuit and their functional properties during each behavior.
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F3 Signal cancellation and contrast invariance in electrosensory systems
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When processing sensory input, it is of vital importance for the neural systems to be able to discriminate
a novel stimulus from the background of redundant, unimportant signals. Neural mechanisms responsible
for prediction and cancellation of redundant information could be an efficient way to achieve such dis-
crimination. While the concrete mechanisms that the brain employs for this task are presently unknown, a
network able to perform this cancellation is thought to exist in the electrosensory lateral line lobe (ELL) of
weakly electric fish [1]. This fish emits a high-frequency (600-1000 Hz) sinusoidal electric organ discharge
(EOD) into its environment to sense its surroundings and communicate to conspecifics. Small objects
such as prey create spatially localized amplitude modulations (AMs) of the EOD, whereas tail bending or
communication signals induce spatially global AMs [2]. These AMs are detected by electroreceptors that
densely cover the body of the fish, and provide feedforward input to pyramidal cells in the ELL. It is known
that a subpopulation of such pyramidal cells, the superficial pyramidal (SP) cells, remove low-frequency
predictable global signals (i.e. tail bending) from their input to maximize detection of novel local stimuli
(i.e. prey) [1]. This is presumably achieved using a feedback pathway involving the granule cell layer (a
cerebellar-like structure known as EGp). These granule cells connect to SP cells via parallel fibers (PFs)
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which may be acting as delay lines segregated into frequency channels to destructively interfere with the
global stimulus. Recent in vitro studies found a novel burst timing-dependent learning rule which would
be able to shape this feedback [3].

Following a previous work [4], we study the cancellation of low-frequency simple redundant signals, i.e.
sine waves, in the ELL of the weakly electric fish. The study combines in vitro data, in vivo electrophys-
iology recordings from neurons in the ELL and numerical modeling to address this issue. More precisely,
we model the neural network responsible for signal cancellation in the ELL of the fish, and compare our
predictions with electrophysiology data recorded in vivo [4]. In the model, we assume the presence of: 1)
stimulus-driven feedback to the SP neurons, 2) a large variety of temporal delays in the PFs transmitting
such feedback, and 3) burst-induced long-term plasticity. We show that the modeled network is able to
efficiently cancel global redundant signals by shaping the feedback as a negative image of the global signal
arriving to the SP cells. Such negative image is generated via the burst-induced anti-Hebbian learning
rule in the PF-SP cell synapses, while the full period of the signal is covered by the incoming feedback due
to the wide range of PF delays present in the network. The cancellation is found to be in agreement with
in vivo recordings, and it is strong for signals with frequencies up to 16 Hz, enabling a clearer background
above which to detect relevant non-repetitive stimuli such as prey signals (and thus to better capture
the prey). Due to the importance of the phase-relationship between the feedback and the stimulus, the
mechanism is found to be frequency-specific, suggesting the presence of multiple frequency channels as
observed in vivo [4]. Interestingly, our model predicts that the cancellation is maintained for signals with
different AM strengths (i.e. contrasts). Such contrast-invariance is highly desirable since natural signals
would display different contrasts depending, for instance, on the distance between the fish and the origin
of the EOD perturbation.
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The fast-firing properties of parvalbumin-positive (PV+) interneurons, and their extensive connections
with neighbouring excitatory neurons, provide them with enormous potential to influence network rhythms
and hence behaviour. Thus, it is not entirely surprising that these cells have been implicated in playing
a role in a variety of pathologies (e.g. epilepsy [1]). Mathematical modeling allows one to explore the
contribution of this population in a simplified setting, and make predictions to guide further experimental
work. However, direct links between existing fast-spiking interneuron models and empirically determined
cellular intrinsic and network characteristics are unclear, and therefore model predictions can be difficult
to interpret in a biological setting. Therefore, we have created a network model of PV+ interneurons
that is tied to experimental work on multiple levels, and we use this model to investigate the potential of
this population to realize coherent oscillations.

Our PV+ interneurons are represented with an Izhikevich-type model [2], and involve parameter val-
ues that are designed to approximate the cell’s intrinsic properties. To determine these parameters, spike
characteristics and passive properties were extracted from whole-cell patch clamp recordings of PV+
interneurons in the CA1 region of an intact hippocampal preparation in vitro. Our network model is
composed of these individual PV+ cell models, and the network size, architecture, and synaptic proper-
ties are chosen to be consistent with those found in the literature. Recordings during emergent network
oscillations [3] provided us with information about realistic firing rates and synaptic activity of PV+
interneurons. These firing rates, used in combination with the cell's intrinsic frequency-current profile,
provided physiological constraints on the amount of synaptic current the PV+ cells receive during these
spontaneous network oscillations. Under voltage clamp, excitatory post-synaptic current peaks are used
in our model as an upper bound on the range of synaptic input. We used this network model to determine
whether coherent rhythms could be produced within experimental constraints.

Our model produced intrinsic properties and spiking behaviors which approximated the experimentally
determined membrane capacitance, resting membrane potential, threshold potential, spike width, spike
peak potential, peak after-hyperpolarizing potential, and amount of adaptation. Model parameters were
determined such that the slope of the model’s frequency-current profile and the model rheobase current
were within the range of our experimental data. As such, we have produced a network model of PV+
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interneurons that has direct links to cellular characteristics with model parameters that have clear biolog-
ical interpretations. In addition, network simulations of our PV+ interneuron model produced coherent
gamma output. Since the firing properties and network architecture of PV+ interneurons puts them in
an ideal position to influence network activity, this cell type will likely remain a focus of experimentalists
and modelers alike. A model such as ours, with clear links to biology, may be used as a platform to
investigate the role of these fast-firing PV+ interneurons in network oscillations and behaviour.
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In 1967, Winfree[1] proposed a novel mathematical approach to describe phenomena of collective syn-
chrony in nature (i.e. flashing of fireflies, clapping in a theatre, alpha rhythms, etc.) using a large coupled
network of phase oscillators with a diversity of natural frequencies. By analyzing this large heterogeneous
network from a “mean field” approach, the spontaneous synchrony can be understood as a critical phase
transition similar to most statistical mechanical systems. In this work, we employ this approach to model
the phase transitions and bifurcation structures of a large network of pulse-coupled theta neurons [2] by
appropriate choice of Winfree's "response" and "influence" functions, the latter of which is parameter-
ized by a "sharpness" parameter n [1]. As this parameter increases, the influence function approximates
the behavior of a pulse-coupled synapse. Assuming a Lorentzian distribution of natural frequencies of
width D and mean value wy, taking the thermodynamic limit, and employing the Ott-Antonsen reduction
method [3], the collective dynamics of the pulse-coupled network can be analytically reduced to a single
low-dimensional dynamical equation for the mean field parameter z(t).

We analyze the bifurcation diagrams for different values of the sharpness parameter n. We find that
more complex behavior is apparent with increasing sharpness of the influence function, and that equilibria
outside the physically relevant region (within the unit circle) affect the transient dynamics of z(¢) inside
the circle. Further, we find that some level of coherence always exists in the network for non-zero coupling,
in contrast to other mean field coupled phase oscillator networks [1,4]. Most interestingly, heterogeneity
is observed to suppress complexity in the collective/macroscopic behavior. As the network becomes more

36



homogeneous (A — 0), more complex dynamic including aperiodic and multistability emerge from the
macroscopic mean field.

. Stable Spiral
‘ Unstable Spiral
Stable Node

Number of Fixed Points forn =7 / N
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Figure 1: A sample bifurcation diagram
showing the complex structure of fixed
points at various locations in parame-
ter space, for a sharpness parameter of
(n = 7). Several representative phase
portraits from several distinct region of
parameter space are included.
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Oxygen is an essential element for brain activity. The brain is a metabolic engine that requires 20% of
the body’s metabolic energy, despite being only 2% of the human body mass [1]. Two thirds of brain’s
metabolic energy is dedicated to supporting neural spiking activity. Much of the O2 dependent ATP
metabolism in single neurons is used by energetic Na/K-ATPase pumps that transport 3Na™ outwards
with 2K inward against their concentration gradients for each ATP hydrolyzed [2,3]. However, under-
standing the relationship between seizures and real-time oxygen dynamics has been restricted by current
technical limitations. Computational models can offer insight to help understand the measurements from
experiments.

37



We have performed experiments relating seizure activity at the cellular level with simultaneous real-
time O2 microdomain measurements. In this paper, we build a mathematical neuron model that extends
the Hodgkin-Huxley formalism containing leak currents for sodium, potassium and chloride ions, transient
sodium currents, and delayed rectifier potassium currents. This neuron was embedded within an extra-
cellular space and a simplified glia-endothelium system. The Na™ and KT ion concentrations as well as
extracellular oxygen density were continuously estimated. Hypoxia was modeled by reducing both neuron
and glial Na/K-ATPase pump activities.

During seizure events, the extracellular KT and intra-
cellular NaT were increased, which further activated
the Na/K-ATPase pump activity. Energy (ATP) and
02 demand were simultaneously increased. There-
fore, local available [O2] decreased substantially dur-
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ing seizure events, and the apparent O2 debt sub- | = |
stantially outlasts the intense electrical activity of a ED 0
seizure, as shown in Figure 1. This result is consistent | &

with experimental data [4]. We also observed that
hypoxia alone can induce seizure like events, which
occurs only in a narrow range of bath oxygen pres-
sure, reflecting experimental observations. Lastly, we
reproduced the interplay between excitatory and in- - - - ” -
hibitory neurons seen in experiments. Our model Time (s)
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accounts for the different [O] levels that we have
observed during seizures in pyramidal cell layers vs.
inhibitory (oriens lacunosum moleculare) cell layers.
Our work suggests the critical importance of model-

Figure 1. Membrane potentals (fop trace),
extracellular potassium concentration (middle
trace), and oxygen density (bottom trace) from a
sngle model neuron during a seizure event. The
time course of [O ] debt is qualitatively smilar to

that nhserved exnerimentally.

ing extracellular ion concentration and oxygen
dynamics to properly understand the underlying mechanisms behind seizure and related phenomena.
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Ca2+/ca|modulin—dependent protein kinase Il (CaMKII), which is present in high concentrations in the
brain, contributes to many forms of synaptic plasticity. The induction of synaptic plasticity by CaMKII
involves an intracellular signalling cascade that links neuronal Ca2t signals with the phosphorylation of
neurotransmitter receptors; an important step in this biochemical cascade is the autophosphorylation of
CaMKII after binding of C32+/ca|modu|in (Cayg-CaM).

The dependence of this autophosphorylation reaction on the temporal structure of Cay-CaM signals
has been investigated in previous experiments [1] and computer simulations [2]. These experimental and
theoretical studies have indicated that the autophosphorylation of CaMKII is sensitive to the frequency
of repetitive Calt pulses, and it has been concluded that CaMKII can decode oscillatory Calt signals
[1,2].

: : : : 1
A B
0,6' ,p 1 HZ 7
! / ——-25Hz
r — = 4H
04t i £ - o | |
= ro e 1H
. z ([Cay-CaMl, .. = 400nM)
—— 25 Hz ([Ca,-CaM] = 160nM)
— — 4 Hz ([Ca,-CaM], . = 100nh)
I:l 1 1 1 1
0 20 40 B 80 100 { 20 40 8] g0 100
time (sec time (sec

Figure 1: CaMKII phosphorylation and its dependence on the effective Cag-CaM concentration. (A)
Temporal evolution of the phosphorylated form of CaMKII (Wp) in response to one hundred 200 ms
square pulses of Caz-CaM (100 nM) at frequencies of 1 Hz (solid blue), 2.5 Hz (dashed red) and 4
Hz (dashed-dotted magenta) in our simplified model. (B) Wp in response to one hundred 200 ms
square pulses of Cag-CaM at 1, 2.5 and 4 Hz, but with scaled pulse amplitudes so that the effective
concentration of Cag-CaM is 80 nM. The amplitudes of Caz-CaM pulses are 400 nM at 1 Hz (solid

blue), 160 nM at 2.5 Hz (dashed red) and 100 nM at 4 Hz (dashed-dotted magenta).
Here, we apply a simplified version of the commonly used CaMKIl activation model by Dupont and

collaborators [2] to investigate the mechanism that underlies the dependence of the overall autophospho-
rylation kinetics on the frequency of Ca2™ oscillations. In the simulations by Dupont et al., CaMKII was
subjected to different average, or 'effective’, Cag-CaM concentrations, which in turn affected the average
concentration of the CaMKII subunits, and the autophosphorylation kinetics.

We first replicate the simulation results presented in [2] with our simplified model (Figure 1A). To identify
the mechanism that underlies the observed frequency dependence, we then rescale the Cay-CaM concen-
trations to an equal effective concentration, and compare the phosphorylation kinetics (Figure 1B). We
demonstrate that in our model the overall phosphorylation rate under sustained application of Caz-CaM
pulses depends on the average (‘effective’) concentration of Cag-CaM in the system, rather than on the
pulse frequency itself. Moreover, we show that the application of a constant level of Cag-CaM with the
same mean concentration as in the pulsed protocol results in the same level of CaMKII phosphorylation.
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Our simulation results indicate that the notion of CaMKIl as a decoder of Ca2T oscillations is mis-
leading and suggest experimental tests with rescaled Caz-CaM concentrations.
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The Anntenal Lobe (AL) is the olfactory processing unit in insects, composed of projection neurons (PNs)
and local neurons (LNs) [1]. It has been demonstrated that the AL reformats the sensory input informa-
tion that it receives into spatiotemporal firing patterns exhibited by the PNs [2,3]. In many insects the
LNs are mainly inhibitory which suggests that the inhibition is responsible for shaping the input into a
robust pattern [4]. The robustness of the pattern is expressed as follows: over several applications of the
same odor the projection of the data recorded from the PNs onto a few dominant firing patterns results
in a robust low dimensional trajectory. This trajectory appears to be similar to a trajectory that converges
to a stable unique fixed point [5].

In this work, we resolve several open questions raised by [5,6]. Specifically, we study how interactions
between the LNs and PNs permit creation of robust and spatiotemporal codes. We further propose a
simple model that mimics the dynamics of the AL and the dynamics of mixtures of odors. Our work is a
combination of theoretical analysis and experimental studies.

Theoretically we consider a network of excitatory-inhibitory firing units that has a similar structure to
the AL. By proposing to project the dynamical equations of the network onto given orthogonal spatial
patterns, we derive the conditions on the interactions between the inhibitory and excitatory population
such that the network will support a unique stable fixed point. The analysis is based on requiring that
the inhibitory neurons will suppress inputs that are not associated to specific odors (noise and unknown
patterns) but being neutral to the given spatial patterns. These conditions allow us to prescribe the con-
nections between PNs and LNs and do not require specific symmetries (in contrast to Hopfield networks).

Experimentally we record the dynamics of PNs in the AL of the Manduca Sexta moth both for inputs
that are single odor or mixtures of two odors. Extracting the spatial patterns (first PCA mode) obtained
from experiments with single odor inputs we calibrate the network. We are able to establish similarity
between the model dynamics and experimental projections and thus validate our theoretical construction.
Once the model is calibrated we test it against experiments with inputs that are different ratios of two
odors revealing similar dynamics. To test the importance of inhibition, conjectured to be responsible for
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existence of a stable fixed point, we repeat the experiments in which the inhibition is blocked by a drug.
Results demonstrate that the robustness of the dynamics is destroyed.

References

1. Galizia CG, and Rgssler W (2010). Parallel olfactory systems in insects: anatomy and function. Ann.
Rev. of Ent., 55: 399-420.

2. Stopfer M, Jayaraman V, and Laurent G (2003). Intensity versus identity coding in an olfactory
system. Neuron, 39: 991-1004.

3. Riffell J, Lei H, and Hildebrand J (2009). Neural correlates of behavior in the moth Manduca sexta in
response to complex odors. PNAS,106:19219-19226.

4. Lei H, Christensen T, and Hildebrand J (2002). Local inhibition modulates odor-evoked synchroniza-
tion of glomerulus-specific output neurons. Nature Neuroscience, 5: 557-565.

5. Mazor O, and Laurent G (2005). Transient Dynamics versus Fixed Points in Odor Representations by
Locust Antennal Lobe Projection Neurons. Neuron, 48: 661-673.

6. Rabinovich M, Huerta R, and Laurent G (2008). Transient dynamics for neural processing. Science,
321:48-50.

06 Estimating Receptive Fields and Spike-Processing Neural Circuits in Drosophila
Aurel A. Lazar, Yevgeniy Slutskiy*
Department of Electrical Engineering, Columbia University, New York, NY 10025, USA

One of the long-term goals of sensory neuroscience is the development of sound experimental and theoret-
ical methods for understanding the functional organization of sensory systems. In this regard, Drosophila
melanogaster is the model organism of choice: it boasts a relatively small brain, its sensory systems have
been anatomically well characterized and it offers an extensive genetic toolbox for visualizing and altering
its neural circuits. Despite these advantages however, comprehensive models of sensory processing in
Drosophila are sparse, in particular due to the lack of methods for estimating spike-processing neural
circuits in higher brain centers. The majority of existing neural circuit models and methods for their
identification assume rate-based systems (see [1] for a review), and take both the input (stimuli) and the
output (response rates) to be in the continuous domain. In a practical setting, however, outputs of most
neurons in a sensory system are sequences of all-or-none action potentials. Furthermore, input signals are
continuous only for those neurons that are located at the sensory periphery. In contrast, input signals for
neurons upstream of sensory neurons are spatiotemporal spike trains. Hence, there is a need to develop
a generic framework for estimation of both receptive fields in the periphery and of spatiotemporal spike
processing upstream.

Here we propose a novel theoretical approach for estimating receptive fields in circuit models that in-
corporate biophysical spike-generating mechanisms (e.g., the Hodgkin-Huxley neuron) and admit both
continuous sensory signals and multidimensional spike trains as input stimuli. We thus explicitly take
into account the highly nonlinear nature of spike generation that has been shown to result in significant
interactions between various stimulus features [2], [3] and to fundamentally affect the estimation of re-
ceptive fields [4]. Furthermore, and in contrast to many existing methods [1], our approach estimates
receptive fields directly from spike times produced by a neuron, thereby obviating the need to repeat ex-
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periments in order to compute the neuron’s instantaneous rate of response (e.g., PSTH). The employed
test signals belong to spaces of bandlimited functions and bridge the gap between identification using
synthetic and naturalistic stimuli. This makes our methodology particularly attractive in those sensory
modalities (most notably olfaction [5]), where it is difficult to produce stimuli that are white and/or have
particular distribution/ attributes [1]-[4]. First, we work out in detail algorithms for identifying temporal,
spatial and spatiotemporal receptive fields in the sensory periphery. We show that our methodology is
readily generalizable to multiple receptive fields as well as to higher dimensions, allowing one to con-
sider more complex receptive fields, if needed. Second, we demonstrate how to identify the processing
of multiple spiking inputs converging onto the dendritic tree of a spiking neuron. Third, we show that
the presented methodology allows one to model integration of sensory modalities in higher brain centers.
Finally, we test the proposed approach using in-vivo data recorded from the olfactory system of Drosophila.
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Prediction and competition mechanisms are here combined into a neuro-inspired computational model in
order to enhance robustness for spatiotemporal tracking and pattern recognition tasks. The research pre-
sented in this abstract extends the initial experimental results and mathematical accuracy proof obtained
with a single predictor [1] to a set of predictors. This distributed model is grounded on the Continuum
Neural Field Theory (CNFT) that uses global inhibition and local excitation to implement competition
[2]. External stimulations and internal predictions bias the dynamics of the field so as to constraint the
selection and tracking of a target. Conflicting signals are indirectly used to filter out noise and inhibit
predictors that are not adapted to the current situation (see Figure 1). The topology of the neural fields
grants generalization capabilities to the system, and flexibility is thus further increased as interpolation
occurs between predictors.
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Results

The performance and emergent attentional properties of the model were ascertained on a 2D visual
tracking application with ambiguous and noisy signals. Results are synthesized in Table 1, averaged over
60 simulations. A percentage lower than 100% means the performance has improved with an adequate
predictor. A value below 20% generally means the original CNFT equation lost the target, in contrast
with the extended version.

Table 1: Predictive/reactive tracking error ratio. Predictors

Scenario Ratio S

Competition between distant 114%
identical stimuli
Moving target with 30 random 67%
distracters

Focus
Moving target with Gaussian noise | 51%
(0‘ == 05) t+dt
Obstacle on trajectory (fixed 10%
distracter) [ I S G 10
Full occlusion of the target after | 17% Comgetition Smm:ation
convergence 0.0
. » s
1.0

Conclusions

While the predictors improve tracking performance Figure 1. Graphical representation of the extended

when they adequately anticipate the dynamics, their CNFT equation. The bubble on the focus field
inadequacy simply leads to a fall back on the original

CNFT dynamics. This allows the system to perform
correctly while learning the predictors, but also to
discriminate between trajectories, as the relative level
of assimilation of the dynamics is updated in real-
time.
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will preferentially move where the stimulation and
focus activities are strongly correlated, but conver-
gence is here biased by predictors that adequately
anticipates the dynamics (p0).

08 Predicting Eye Movements in a Contour Detection Task
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An important task for the visual system is grouping local image elements into meaningful objects. One
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fundamental process for performing this task is contour integration, in which collinearly aligned local
edges are merged into global contours. Models for contour integration often use iterative algorithms to
explain how this cognitive process is performed in the brain. By employing an association field (AF)
which quantifies how strongly two oriented edge elements are linked to be part of a contour, such
a model integrates edge elements in a recurrent manner. This process generates saliency maps for
contours of increasing lengths as time proceeds. Recently, we developed a probabilistic model of contour
integration which explains human contour detection behavior to a previously unprecedented degree [1].
Given this performance, we wondered whether the model might also explain the spatiotemporal dynamics
of contour integration. Measuring eye movements can be a useful method to test the corresponding model
predictions, hypothesizing that subsequent fixations of subjects preferentially visit ‘hotspots’ of neural
activity which dynamically emerge during the integration process. Here we compare model simulations
with data from a recent experiment [3], in which eye movements were measured while observers were
instructed to search for a 7-element contour embedded in a background of randomly oriented Gabor
elements [2]. The experiment consisted of two tasks: for the first task observers were asked to indicate
whether a global contour was on the left or right hemifield (left-right task), while the second task required
observers to indicate presence or absence of a contour (present-absent task). The parameters of the model
were first optimized for the left-right task, requiring it to reproduce both human performance and decisions

as best as possible.
Figure 1. A. Sample stimulus con-

e r taining a contour (red arrows),

2 2 with overlaid saccade trajectory of

05 one subject. B. Factor r by which

' model activity in the second task

S 0.4 is higher at saccade target lo-

} 0.3 cations than at other locations,
73’, 0.2 ] in dependence on two parameters
A ' defining the shape of its associa-

0.1I tion field. The white ellipse de-
1 notes the parameter regime for
o 01 02 0.3

which the model optimally

fitted human contour detection behavior in the first task.

The optimal model was then used to predict potential locations for saccade targets which we compared
to fixation trajectories of observers for stimuli from the second task in which no contour was present. For
edge elements near saccade targets, the model predicts a probability to belong to a contour which is two
times higher than for other edge elements. Thus, the statistical analysis shows that fixations are indeed
not random, but are likely to occur on locations judged salient by the model. This result confirms both
the validity of our model and the hypothesis that saccades on random Gabor fields preferentially visit
locations with edge configurations similar to contours.
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Many important processes in neurobiology as well as neuronal engineering applications rely upon multires-
olution representation and analysis of external information. There are various approaches which attempt
to explain how human perception systems perform multiscale representation and sparse coding. The
model proposed here is based on a new approach to multiresolution of input signals and reveals synchro-
nization as a general mechanism for multiscale representation common to various sensory systems. The
proposed mechanism is nonlinear and adaptive in the sense that it does not rely on convolution with
a preconceived basis. For the visual system this approach is a major departure from the current linear
paradigm, which holds that the structure of the receptive fields and their variations are responsible for
performing multiscale analysis. While there are some well-known, important roles played by entrainment
in neuronal systems, our model reveals a new function of dynamic coordination in the brain - multiscale
encoding, thus demonstrating that synchronization plays a greater role in perception in general and in
vision in particular, than was previously thought.
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010 fMRI correlates for low frequency local field potentials appear as a spatiotemporal
dynamic under multiple anesthetic conditions
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In the previous decade, interest in the “functional connectivity” of the brain has greatly increased, but the
nature of the signal underlying derived predictive metrics remains poorly understood. A typical study uses
functional magnetic resonance imaging (fMRI) and calculates regions of correlated low-frequency activity
or “functional networks” when no task is being performed, the “resting state”. However, unlike traditional
block /event based fMRI, the spontaneous fluctuations that determine such networks may not relate to a
standard “hemodynamic response” to neural activity and may be task and brain region dependent. Ten
rats were anesthetized with either isoflurane (iso) or dexmedetomidine (med). Each rat had simultaneous
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Figure 1: A. A coronal image of a rat’s brain in the same plane as the fMRI images used in this
study. B. (med) r; between LFP and fMRI at each voxel, times listed are the time shift of LEP prior
to fMRI. C. (med) fMRI pattern from Majeed et al. algorithm , times listed are arbitrary, so they
are shifted to match (B).

local field potentials (LFP) recorded from implanted electrodes in bilateral primary somatosensory cortex
(SI) simultaneously with single-slice fMRI of SI. After preprocessing, signals were filtered to regions of
significant spectral coherence (0.04-0.18Hz iso, 0.05-0.3Hz med). Pearson correlation (r;) was calculated
between LFP signals at time shifts -10s to 10s relative to fMRI, at every fMRI voxel (Figure 1B). Instead
of a simple hemodynamic response, the LFP correlates appeared both to have a component of spatial
propagation (Figure 1B, white arrows), and alternation between positive and negative correlation. This
was observed using both anesthesias and suggests that LFPs in coherent frequencies do not simply reflect
local activation, but may instead be part of a large scale dynamic process. Using an fMRI-based algorithm
validated in both anesthetized rats and awake humans , a spatiotemporal dynamic was produced that
was highly similar to r; (Figure 1C). Spatial correlation (r5) between the two types of pattern reached a
maximum at approximately the same shift between patterns in all rats, mean r; = 0.25 (med) and mean
rs = 0.23 (iso), with mean r; > 0.10 indicating significance at p < 0.05 when using boot-strapping and
correcting for multiple comparisons. These results suggest that the neural basis of functional networks
may be more complex than a simple hemodynamic response and possibly contains contributions from
large-scale neuromodulatory processes.
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The synaptic renormalization hypothesis posits that a primary function of sleep is to maintain synaptic
homeostasis [1]. According to this theory, the flood of sensory signals processed by the brain during
waking results in global potentiation of cortical synapses, a process which consumes energy and space
and therefore cannot continue unabated. Sleep is therefore a period of global synaptic downscaling that
maintains homeostasis, thereby conserving energy and cortical space. Specifically, it is slow-wave activity
(SWA) during NREM sleep that is thought to induce this depotentiation. While evidence in support
of both global potentiation of synapses during waking [2] and SWA-mediated downscaling of synapses
during sleep [3] continues to mount, there is still much uncertainty about the biophysical mechanisms
which may contribute to either synaptic upscaling or downscaling [4].

Waking and sleep states are promoted by the activity of brainstem and hypothalamic neuronal nuclei
that express key neurotransmitters in thalamic and cortical brain regions [5]. Waking is characterized by
high levels of noradrenaline, serotonin, histamine and acetylcholine, while all these neurotransmitters are
at low levels during NREM sleep. We propose that the influence of acetylcholine (ACh) may provide a
mechanism for both upscaling and downscaling of cortical synapses. Specifically, experimental studies
have shown that ACh modulation switches the phase response curves of cortical pyramidal cells from
Type Il to Type |. Our computational studies of cortical networks show that the presence of ACh

Aok TSRS Ach oA Ach oA %, |nd.uces cellular and netwo.rk dynam!cs
0.3 Lo B | 1< which lead to net synaptic potentia-
= | I L5 tion under a standard STDP rule, while

| I . .
202 | | | g the absence of ACh alters dynamics in
2 | : =z such a way that the same STDP rule
2 0.1 ; i tsooio Synapticweight Y leads to net depotentiation (see Fig.
@ ! = 1). Thus the well-established preva-
0 Ly @000 lence of ACh in cortical circuits dur-

] . . .
> ing waking may lead to global synaptic
0 10 20 30 40 %1000 - hl h b fACh

Time (s) 2 potentiation, while the absence o
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Fig. 1: Global potentiation and depotentiation of a T 0 - durmg NREM S|eep may lead to glObal

cortical network due to the presence or absence of Ach. Synaptic weight ~ ™max depotentation. Counter—intuitively, the
global potentiation induced by the presence of ACh in our simulated networks is due to asynchronous
activity. This is due to the fact that in the asynchronous state, there exists important statistical structure
to the network dynamics, so that post-synaptic neurons are more likely to fire immediately after (rather
than before) a pre-synaptic action potential, thus leading to net potentiation of the network due to STDP.
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The field of biologically inspired technology has evolved to the emergence of robots that operate au-
tonomously. Some studies have focused on developing social robots that interact with humans by fol-
lowing social behaviors where other research have centered their efforts on mobile robots with the ability
to navigate in their well-known environment. These general-purpose autonomous robots can perform a
variety of functions independently, from recognizing people or objects to navigating in a familiar room.
As of yet, no humanoid robot has been capable of traveling through a new suburban environment to
reproduce goal-related learning and navigational activities.

Based on experimental findings, we propose a computational model that is composed of critical inter-
acting brain regions and utilizes fundamental learning mechanisms. It is incorporated in a sophisticated
robotic system where a virtual robot navigates through a new environment, learns and recognizes visual
landmarks, and consequently makes correct turning decisions to reach a reward.

The detailed brain architecture included visual, entorhinal, prefrontal and premotor cortices, as well as
the hippocampus. Our microcircuitry replicated some fundamental mammalian dynamics, which were
integrated in a robotic loop. This virtual robotic system was designed around a number of components
unique to our NeoCortical simulator (NCS) and our Virtual NeuroRobotic (VNR) paradigm. The neural
simulation was executed on a remote computing cluster and was networked to the other system compo-
nents (NCSTools, Webots, Gabor filter) using our Brain Communication Server (BCS), a server developed
specifically for integration with NCS.

The virtual humanoid was able to navigate through a new virtual environment and reach a reward

after a sequence of turning actions. Along the way, it encountered familiar and non-familiar external
cues to provide guidance and follow the correct direction. This is the first bio-inspired robot that showed
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high functionality during navigation while utilizing spiking cortical neurons in a real-time simulation. More
importantly, it could take us a step closer to understanding memory impairments in Alzheimer’s patients.

013 A Neural Network Based Holistic Model of Ant Route Navigation
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The impressive ability of social insects to learn long foraging routes guided by visual information [1]
provides proof that robust spatial behaviour can be produced with limited neural resources [2-3]. As
such, social insects have become an important model system for understanding the minimal cognitive
requirements for navigation [1]. This is a goal shared by biomimetic engineers and those studying animal
cognition using a bottom-up approach to the understanding of natural intelligence [4]. Models of visual
navigation that have been successful in replicating place homing are dominated by snapshot-type models
where a single view of the world as memorized from the goal location is compared to the current view in
order to drive a search for the goal [5, for review, see 6]. Snapshot approaches only allow for navigation
in the immediate vicinity of the goal however, and do not achieve robust route navigation over longer
distances [7].

Here we present a parsimonious model of visually guided route learning that addresses this issue [8]. We
test this proposed route navigation strategy in simulation, by learning a series of routes through visually
cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky.
Our navigation algorithm consists of two phases. The ant first traverses the route using a combination of
path integration and obstacle avoidance during which the views used to learn the route are experienced.
Subsequently, the ant navigates by visually scanning the world — a behaviour observed in ants in the field
— and moving in the direction which is deemed most familiar. As proof of concept, we first determine
view familiarity by exhaustive comparison with the set of views experienced during training. In subsequent
experiments we train an artificial neural network to perform familiarity discrimination using the training
views via the InfoMax algorithm [9].

By utilising the interaction of sensori-motor constraints and observed innate behaviours we show that it
is possible to produce robust behaviour using a learnt holistic representation of a route. Furthermore,
we show that the model captures the known properties of route navigation in desert ants. These include
the ability to learn a route after a single training run and the ability to learn multiple idiosyncratic routes
to a single goal. Importantly, navigation is independent of odometric or compass information, does not
specify when or what to learn nor separate the routes into sequences of waypoints, so providing proof of
concept that route navigation can be achieved without these elements. The algorithm also exhibits both
place-search and route navigation with the same mechanism. As such, we believe the model represents
the only detailed and complete model of insect route guidance to date.
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Persistent patterns of neural activity that last long after the offset of a stimulus are thought to be the neural
substrate for short-term memory. Because the observed decay of persistent activity in memory circuits is
much slower than the typical decay time constants associated with synaptic or intrinsic neuronal dynamics,
it has been suggested that network interactions must be used to prolong the duration of persistent activity.
Most often, these network interactions have been assumed to mediate positive feedback between neurons
that supports a long-lasting reverberation of activity. However, most positive feedback models do not
naturally fit the architecture of working memory-storing structures in neocortex that have been suggested
to exhibit a close balance between excitation and inhibition. Furthermore, positive feedback models
of analog memory storage are highly non-robust against commonly studied perturbations in network
connectivity.

Here, we suggest a complementary mechanism for generating persistent activity based on the principle of
corrective negative-feedback: an error-correcting signal of the form of a time-derivative of activity reduces

memory slip when it occurs. Using analytic calculations, we show that neocortical circuit models with the

50



observed balance in strength, but with different kinetics, between excitatory and inhibitory synaptic inputs,
produce a negative-derivative feedback signal that counteracts drifts in persistent activity. The networks
maintain a continuum of stable firing rates even in the presence of intrinsic input-output nonlinearity,
while still remaining responsive to external memory inputs. More generally, the networks act as temporal
integrators of their inputs, for example converting step-like input into linearly ramping activity.

Memory networks operating in this balanced regime are robust against many commonly studied pertur-
bations to synaptic weights that grossly disrupt the performance of persistent activity circuits based on
positive feedback. Specifically, in response to uniform changes in synaptic excitation, synaptic inhibition,
intrinsic neuronal gains or loss of a fraction of excitatory or inhibitory neurons, there is minimal decay
or instability in persistent firing. Furthermore, spiking network models implementing derivative feedback
generate persistent firing with Poisson-like statistics, as has been observed experimentally. This observed
highly irregular activity occurs across a graded range of firing rates, and arises because the close balance
between excitation and inhibition results in spikes being triggered primarily by fluctuations in, rather than
means levels of, synaptic inputs.

To generate experimental predictions that distinguish among different mechanisms for short-term mem-
ory, we compared the correlation structure of excitatory and inhibitory inputs in the negative-derivative
feedback models to that of typical analog memory models based on positive feedback. Negative-derivative
feedback models exhibit a strong positive correlation between inhibitory and excitatory synaptic inputs, as
suggested by recent experiments. By contrast, similarly responding neurons in positive feedback models
either exhibited anti-correlations or weak correlations between their excitatory and inhibitory inputs.

Altogether, this work suggests a new paradigm for short-term memory storage based upon a balanced
network with cortical-like architecture. Stabilization of responses through negative feedback is a common
principle in engineering control systems. Our work suggests that a similar principle might be inherent to
the circuitry of working memory systems.

015 Stretching of memory in strategic decision making
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016 Individual differences in leech heart motor neuron models
Damon Lamb*, Ronald L Calabrese
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Motor neurons are frequently overlooked as critical contributors to the programming of motor output
except where they directly play a role in central pattern generators (CPGs). Leech heart motor neurons
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have been shown to contribute significant phase shifts to the rhythmic motor patterns they produce ,
although the most important factor in pattern formation is the interaction of CPG output and synaptic
weights from the CPG onto the motor neurons. We seek to address the question of which neural
parameters, in particular active conductances, are important for functional pattern formation, and how
they influence it. We are well positioned to address this question, as we have a unique dataset comprising
the complete leech heart motor neuron input pattern, output pattern, and synaptic weights for multiple
ganglia in many individual animals. We have begun to exploit these data to develop more realistic Hodgkin-
Huxley style biophysical models of the leech heart motor neurons by constraining models optimized by a
multi-objective evolutionary algorithm to fit this animal-specific data. In particular, we extended the single
compartment Garcia model to a multi-compartmental model and added a slow calcium and a calcium
sensitive potassium channel, currents known to be present in the living motor neurons. Our model’s
dimensions are derived from reconstructions of fluorophore filled leech heart motor neurons in segments
8-12. Membrane currents were distributed according to experimental data and the result of hand tuning;
e.g., the fast sodium current is only present in the axonal compartment. This base model was then
parameterized such that the maximal conductances of the active currents present in each compartment,
as well as the electrical coupling conductance between each pair of motor neurons, were allowed to vary
as free parameters in our evolutionary algorithm. We then utilized our input-output data by delivering
a particular input pattern (specific animal and motor neuron pair) to a model motor neuron and then
comparing the resulting output with that recorded in the same animal. In this manner, we constrained
our definition of an ‘acceptable’ model by the input/output pattern recorded in individual animals -
such a model must transform the input into the correct output within some reasonable error bound.
To generate acceptable models we use a Multi Objective Evolutionary Algorithm (MOEA) to create a
population of models from which a subset achieves ‘acceptable’ status. In this framework, multiple
independent fitness functions are evaluated separately — the phase, duty cycle, spike height, slow-wave
height, and within-burst inter-spike interval (ISI) for the two phases produced. The targets for these
parameters are drawn from the same individual animal as the input/output data, and error bounds are
based on the within-animal variability, although slightly widened for parameters such as ISI, slow-wave
and spike height, as they vary greatly between animals (derived primarily from within-animal experimental
variability). Acceptable model simulation traces were all but indistinguishable from intracellular recordings
from the living system, with the exception of measurement noise, even though they are constrained by
a small number of functional parameters. In order to identify key parameters and relationships between
synaptic weights and membrane conductances which are constrained by the functional requirements of
the system, we will conduct a sensitivity analysis of the acceptable models and inspect the dimensional
stacking of acceptable and failed models. The identified conductances can then be perturbed in the living
system either via dynamic clamp or pharmacological manipulation to validate the modeling results.
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017 Parallel coding of first and second order stimulus attributes

2,3,4

Patrick Mcgillivray!, Katrin Vonderschen!, Eric Fortune?3#, and Maurice J Chacron!*

! Department of Physiology, McGill University, Montreal, QC, Canada
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Natural stimuli often have time varying first (i.e. mean) and second order (i.e. variance) attributes
that each carry critical information for perception and can vary independently over orders of magnitude.
We recorded the responses of midbrain electrosensory neurons in the weakly electric fish Apteronotus
leptorhynchus to stimuli with first and second order attributes that varied independently in time. We
found two distinct groups of midbrain neurons: the first group responded to both first and second order
attributes while the other responded selectively to second order attributes. Using computational analyses,
we show how inputs from a heterogeneous population of ON- and OFF-type afferent neurons are combined
in order to give rise to response selectivity to second order stimulus attributes in midbrain neurons. Our
study thus uncovers, for the first time, generic and widely applicable mechanisms by which selectivity to
second order stimulus attributes emerges in the brain.

018 Short term synaptic depression with stochastic vesicle dynamics imposes a high-pass
filter on presynaptic information

Robert Rosenbaum!2*, Jonathan Rubin'2?, and Brent Doiron!:?

! Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
2 Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA

The filtering properties of synapses are modulated by a form of short term depression arising from the
depletion of neurotransmitter vesicles. The uptake and release of these vesicles is stochastic in nature,
but a widely used model of synaptic depression does not take this stochasticity into account. While this
model of synaptic depression accurately captures the trial-averaged synaptic response to a presynaptic
spike train [1], it fails to capture variability introduced by stochastic vesicle dynamics [2]. Our goal is to
understand the impact of stochastic vesicle dynamics on filtering and information transfer in depressing
synapses.

We derive compact, closed-form expressions for the synaptic filter induced by short term synaptic de-
pression when stochastic vesicle dynamics are taken into account and when they are not. We find
that stochasticity in vesicle uptake and release fundamentally alters the way in which a synapse filters
presynaptic information. Predictably, the variability introduced by this stochasticity reduces the rate at
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which information is transmitted through a synapse. Additionally, this variability introduces frequency-
dependence to the transfer of information through a synapse: a model that ignores synaptic variability
transmits slowly varying signals with the same fidelity as faster varying signals [3, 4], but a model that
takes this variability into account transmits faster varying signals with higher fidelity than slower signals
(Figure 1). Differences between the models persist even when the presynaptic cell makes many contacts
onto the postsynaptic cell. We extend our analysis to the population level and conclude that a slowly
varying signal must be encoded by a large presynaptic population if it is to be reliably transmitted through
depressing synapses, but faster varying signals can be reliably encoded by smaller populations. Our results
provide useful analytical tools for understanding the filtering properties of depressing synapses and have
important consequences for neural coding in the presence of short term synaptic depression.

012 o Figure 1: The linear information rate, I7(g; s), which

%) represents the information per unit time available to
.E ~ an optimal linear decoder that estimates a rate-coded
~ 0.03 presynaptic signal, s(t), by observing a postsynaptic
w conductance, ¢(t). The linear information rate is
&0 0.02 plotted as a function of the peak frequency, f;, of the
= 0.01 signal. When stochastic vesicle dynamics are ignored
0 (dashed red line), I1.(g; s) is independent of f, [3,4].

3 10" When stochastic vesicle dynamics are accounted for

f (Hz) (solid blue line), information transfer is reduced and

high-frequency signals are transferred more reliably than low-frequency signals.
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019 Drug-dominated dopamine circuits spiral addicts down to a cognitive/behavioral
conflict: A neurocomputational theory

Mehdi Keramati, Boris Gutkin*

Group for Neural Theory, Inserm U960, Ecole Normale Superieure, Paris, France

Long-term addicts find themselves powerless to resist drugs, despite knowing that drug-taking may be a
harmful course of action, and an explicit motivation to quit. In controlled experiments, human addicts
show a self-described mistake characterized by an inconsistency between drug-seeking response and their
reported subjective value. We provide a unified computational theory for this inconsistency by show-
ing how addictive drugs gradually produce a motivational bias toward drug-seeking at low-level habitual
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decision processes, despite the low abstract cognitive values. This pathology emerges within the hierar-
chical reinforcement learning (HRL) framework when chronic drug-exposure pharmacologically hijacks the
dopaminergic spirals that cascade reinforcement signal down the ventro-dorsal cortico-striatal hierarchy.

Of = [re + V™" (5441) — Q" (s, a0)] + D

Qn (St7 at) — Qn (St7 CLt) + Og(;?

Here, r; is the rewarding value of the outcome, be it natural rewards or addictive drugs. These equations
show that in order to compute the prediction error signal for updating the value (Q) of state-action pairs
at the n-th level of decision hierarchy, the value of the temporally-advanced state (s;;1) comes from
one higher level of abstraction (n + 1). This captures the role of dopamine-dependent serial connectivity
linking the ventral to the dorsal striatum (known as dopamine spirals), which is suggested to integrate
information across the segregated cortico-basal ganglia loops, thereby allowing more abstract levels to
tune the reinforcement signal used at more detailed levels [1]. The pharmacological effect of addictive
drugs on increasing the extracellular concentration of dopamine within the striatum is incorporated into
this model by adding a positive term D to the prediction error signal. Simulation results (Figure 1) show
that drug-induced dopamine-release puts a bias on the transfer of reinforcement signal from one level
of abstraction to the next. The accumulation of these biases along the rostro-caudal axis progressively
induces a significant discrepancy in the value of drug-seeking behaviors at the top and bottom extremes
of the hierarchy, thereby, an inconsistency between cognitive plans and motor-level habits.

Beside this central phenomenon, our model also accounts for several behavioral and neurobiological
aspects of addiction, such as the gradual insensitivity of drug-seeking to drug-associated punishments
(compulsivity), the delayed development of cue-elicited dopamine efflux in addicts’ dorsal striatum, and
the occurrence of blocking effect for drug rewards. It also suggests key testable predictions and beyond
that, sets the stage for a view of addiction as a pathology of hierarchical decision making processes.
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L B = o Figure 1. In the first 150 tri-
Aol 1> Aoty als, the value of seeking natural
IR T rewards at all levels converge to
112 : —ne r=10 (a). For the case of drug,
L WA T L however, the direct pharmacologi-

PPy A wheeeo Lo cal effect of drug (D=.2) results in
e ma  the value of drug seekimg to

become much higher than at the detailed levels, than at the abstract levels (b). If both of these actions
be followed by punishment of magnitude -16 (the last 150 trials), then whereas cognitive loops assign
a negative value to drug-seeking choice, motor-level loops find drug-seeking desirable (assign a positive
value to it).
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020 The Open Source Brain Initiative: enabling collaborative modelling in computational
neuroscience
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6 Department of Neuroscience, University of Pavia, Pavia, Italy

While an increasing number of biophysically detailed neuronal models (featuring (semi-) realistic mor-
phologies and voltage and ligand gated conductances) are being shared across the community through
resources like ModelDB, these usually only represent a snapshot of the model at the time of publication, in
a format specific to the original simulator used. Models are constantly evolving however, to take account
of new experimental findings and to address new research questions, both by the original modellers, and
by other researchers who help provide quality control/debugging of original scripts and convert the model
(components) for use in other simulators. This crucial part of the model life cycle is not well addressed
with currently available infrastructure.

The Open Source Brain (OSB) repository is being developed to provide a central location for researchers
to collaboratively develop models which can be run across multiple simulators and can interact with
the range of other applications in the NeuroML “ecosystem”. NeuroML [1] is a simulator independent
language for expressing detailed single cell and network models, which is supported by an increasing
number of applications for generating, visualising, simulating and analysing such models as well as by
databases providing the base components (e.g. reconstructed morphologies, ion channels) for use in the
models (http://www.neuroml.org/tool_support). The OSB repository differs from existing model
databases which have traditionally concentrated on frozen, published models. The cell, ion channel,
synapse and network models in this repository develop over time to ensure they reflect best practices
in neurophysiological modelling and allow continuously improving, bug-free simulations. Multiple views
of the model elements are available to encourage feedback from modellers, theoreticians and experi-
mentalists. Links can be made to previous versions of the models in ModelDB, and deep links will be
used to ensure cross referencing to other neuroinformatics resources such as NeuroMorpho and NeuroLex.

The system is based around a Mercurial version control repository with models organised into projects
illustrating a number of neurophysiologically relevant aspects of the cell and network behaviour. The
history is recorded of all changes to each project by contributors who can be distributed worldwide. There
is close integration with the application neuroConstruct [2], allowing the models to be examined with a 3D
graphical user interface, and scripts automatically generated for use on a number of widely used neuronal
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simulators. A number of models are already available in the repository, including cell and network models
from the cerebellum, detailed cortical and hippocampal pyramidal cell models and a 3D version of a single
column thalamocortical network model [3]. While most of the models available are conversions of existing
published models, some have been developed during original research projects using the tools and formats
discussed here [4]. The repository is currently in alpha stage of development and is being tested with
a small number of labs. The resource can be accessed at http://opensourcebrain.org:8080. This
work has been primarily funded by the Wellcome Trust (086699/095667).
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M1 NSF: Theory and Applications
Ken Whang*

Ken Whang, Program Director, Division of Information and Intelligent Systems, National Science Foun-
dation

Place: Evans, Basement AB
Day: Mon, 12:30:13:30

This session will be part tutorial, but mostly informal discussion,aimed at answering your questions about
NSF and giving you a better model of how NSF works.

Ken will be pleased to take questions in advance about any aspects of NSF or your experiences with NSF:
anonymous questions may be posted here: http://www.surveymonkey.com/s/Z6BLC8G.
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Workshops

w1 Behavior Informatics: data bases, data mining and experiments in virtual worlds
Bullock, Room 209 W A+B, Day(s): Thu, 9:00:18:00

Ansgar Koene, RIKEN BSI, Tokyo, Japan

The goal of this workshop is to explore the desirability and possible implementation of a Behaviour-
Informatics platform for the accumulation and sharing of behavioural data, and related analysis tools.
Various Neuroinformatics platforms have in recent years been established to facilitate data sharing and
integration for digital atlases of brain structure and anatomy, for fMRI and electrophysiology data, for
modeling of spiking neural networks and many more. These Neuroinformatics efforts promise to provide
a more coherent picture of the complete brain architecture. Similar efforts in behavioural studies would
facilitate a more complete understanding of the relation between behavioural traits at the micro and macro
levels and their dependence on environmental conditions. In addition to the pooling and standardization
of data from behavioural experiments, another pillar of behaviour informatics could be a concerted effort
to use virtual environments, like massively multi player games, to gather information on human behaviour
in complex dynamic (social) environments with relatively mininmal effort.

If computational NeuroEthology aims to study “the interaction between environment, body and nervous
system that results in behavior” then clearly an informatics platform for sharing of behavioural data is
just as important as platforms for anatomical and functional neural data.

Introduction: Ansgar Koene
Brief pre-view of the topics that will be discussed by the speaker indicating how each talk connects to
the bigger picture of Behaviour-Informatics.

Neuro-Informatics: Pontus Holm (INCF or member of Neuroinformatics Japan Node at RIKEN)
Overview of what has been achieved in neuro-informatics so far, what it promises to achieve for neuro-
science and how it is practically implemented.

Behavioural data mining: MIT Human Dynamics Lab (Prof. A. Pentland or one of his postdocs)
Examples of the use of behavioural data bases and data mining techniques for understanding human
behaviour.

Real data from Virtual Worlds: W. Bainbridge (NSF Division of Information and Intelligent Systems

or a coauthor of the NSF NetLab Workshop Report or Dmitri Williams of USC Annenberg)
Virtual Worlds as tool for studying interaction between humans.

Data mining from online games: M. Szell or S. Thurner Quantification of human group behavior in
a massively multiplayer online game

Agent based modeling: Rosaria Conte (or one of her post-docs at CNR Laboratory for Agent- Based

Social Simulation, Italy) Behaviour databases as basis for agent based modeling to link neuroethological
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understanding of behavior at the individual level to the ramification of this behaviour when it occurs in
groups of individuals.

Discussion: Ansgar Koene (moderator), all speakers & audience
Draft outline of a Behaviour Informatics platform

Speakers:

- Ansgar Koene (RIKEN BSI)

- Pontus Holm (INCF Program Officer; alternate speaker: Prof. Shiro Usui, Neuroinformatics Japan
Node at RIKEN BSI or one of his post-docs)

- Prof. A. Pentland (MIT Human Dynamics Lab or one of his post-docs)

- W. Bainbridge (NSF Division of Information and Intelligent Systems; alternate speaker: Dmitri Williams,
USC Annenberg)

- M. Szell or S. Thurner (Complex Systems Research Group, Medical University of Vienna)

- Rosaria Conte (or one of her post-docs at CNR Laboratory for Agent-Based Social Simulation, ltaly)

W2  Computational Neuroethological Approaches to Problems in Social Neuroscience
Bullock, Room 210 E, Day(s): Wed, 9:00:18:00

Robert Liu, Emory University, Atlanta, GA, USA
Elizabeth Buffalo, Emory University, Atlanta, GA, USA

Workshop Sponsors: The Center for Translational Social Neuroscience, The Computational
& Life Sciences and The Department of Biology at Emory University.

% EMORY UNIVERSITY

DEPARTMENT OF BIOLOGY

& Sciences

The Computational and Life Sciences Strategic Initiative at Emory University

zx/@ EMORY Center for Translational

UNIVERSITY Social Neuroscience

The burgeoning field of Social Neuroscience investigates the neurobiological mechanisms underlying the
interactions that occur between individuals. Interest in this area has grown as social deficits have become
recognized as a key component of several mental health disorders. A cornerstone of this field is the idea
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that understanding the neural activity, circuits and neurochemicals involved in processing social infor-
mation and social rewards requires using stimuli and contexts that are more ethologically relevant than
those traditionally applied in laboratory studies. However, natural stimuli and contexts are complex, so
that designing controlled experiments and interpreting the data can be difficult. This is where computa-
tional neuroethology can make tangible contributions. This workshop highlights examples across species
where using computational and/or quantitative methods in addressing problems in social neuroscience has
helped advance our understanding of the neurobiological and evolutionary mechanisms underlying social
Interactions.

Confirmed speakers include:

Bruce Carlson (Washington University)

Eric Fortune (Johns Hopkins)

Asif Ghazanfar (Princeton)

Hans Hofmann (University of Texas at Austin)
Warren Jones (Marcus Autism Center)
Michael Platt (Duke)

Larry Young (Emory).

W3  Examining the dynamic nature of neural representations with the olfactory system
Bullock, Room 210 E, Day(s): Thu, 9:00:18:00

Christopher Buckley, RIKEN BSI, Tokyo, Japan
Taro Toyizumi, RIKEN BSI, Tokyo, Japan
Thomas Nowotny, University of Sussex, Sussex, UK

In the last few years rapid progress has been made in our understanding of olfactory information processing.
The theoretical aspects of these advances not only have the potential to elucidate the mechanisms of
olfaction but also to shed some light on neural information processing more broadly. Consequently, it seems
timely to organise a focussed workshop to discuss these ideas. In particular, we will examine the dynamic
phenomena at the core of olfactory information processing. For example, recent work (e.g., [1,2,3,4]) has
begun to shed light on the nature of population rate codes. We will discuss the controversy over whether
odours are represented as discrete dynamical states [1] or as smooth, but nonlinear, superposition of
the responses to individual chemical components [2]. Other work has begun to elucidate the roles and
mechanisms of stimulus evoked oscillations (e.g., [5,6]). In particular, we will discuss the possibility that
stimulus specific transient synchrony between inhibitory neurons is important for coding odour identity
and/or intensity. Lastly, work in Drosophila has demonstrated that inter-n-glomerular interactions serve
to normalise the responses of component specific glomeruli in a divisive manner [7]. We will discuss the
prospects of using these insights from the olfactory system to examine the dynamic action of divisive
normalisation in the central nervous system in general.

The workshop is aimed at the many researchers working on the olfactory system but also is likely to
attract a wider audience of theoreticians interested in core computational neuroscience topics such as
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stimulus evoked oscillations and non-n-linear rate dynamics. The workshop should also be of particular
interest to all who are working with nonlinear dynamical systems theory.

Tentative list of speakers: M. Bazhenov, T. A. Cleland, R. Galan, D. Martinez, T Nowotny, M. Stopfer,
U. Bhalla, G. Galizia, A. Khan, C. Linster, J. Niessing, A. Khan, G. Turner
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2. Khan et. al., Odor Representations in the Rat Olfactory Bulb Change Smoothly with Morphing Stimuli.
Neuron, 2011

3. Roberto F. Galan et. al., Sensory memory for odors is encoded in spontaneous correlated activity
between olfactory glomeruli. Neural Computation, 2006.

4. C. L. Buckley and T. Nowotny. Multi-n-scale Model of an Inhibitory Network Shows Optimal Properties
near Bifurcation, Physical Review Letters, 2011.

5. lto, |, et. al., Frequency transitions in odor-n-evoked neural oscillations. Neuron, 2009.

6. Assisi C et al., Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal
patterning. Neuron, 2011.

7. Olsen et. al., Divisive Normalization in Olfactory Population Codes, Neuron, 2010

W4  Multi-Scale Modeling in Computational Neuroscience Il: Challenges and Opportuni-
ties
Evans, Room Basement AB, Day(s): Wed, 9:00:18:00
James Bower, UTSA, San Antonio, Texas, USA
llya Rybak, Drexel University, Philadelphia, PA, USA

Following last year’s highly successful CNS 2011 workshop, we will once again consider and discuss chal-
lenges and issues in multi-scale modeling as they apply to understanding nervous systems. Specifically,
last year's workshop produced an outline for a taxonomy for multi-scale modeling (see figure), which was
proposed as a mechanism for better understanding the structure of multi-scale modeling efforts. This
coming workshop will focus on the further exploration of this taxonomy, with several short initial presen-
tations on its development and applications over the last year. The workshop is being organized by the
co-chairs of the Computational Neuroscience Working Group of IMAG, a multi-federal agency consortium
based at the National Institutes of Health, tasked with exploring and developing multi-scale modeling in
biology. including the U.S. National Institutes of Health, the U.S. National Science Foundation. ().

The results of this discussion will be added to the IMAG wiki and will be presented to the Multi-scale
Modeling Consortium at NIH. This workshop therefore represents an opportunity for the CNS community
to influence the direction of future funding for modeling in general and multi-scale modeling efforts in
particular.
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W5  Methods of Systems Identification for Studying Information Processing in Sensory
Systems
Bullock, Room 209 W A+B, Day(s): Wed, 9:00:18:00

Aurel Lazar, Columbia University, New York, NY, USA
Mikko Juusola, University of Sheffield, Sheffield, UK

A functional characterization of an unknown system typically begins by making observations about the
response of that system to input signals. The knowledge obtained from such observations can then be
used to derive a quantitative model of the system in a process called system identification. The goal of
system identification is to use a given input/output data set to derive a function that maps an arbitrary
system input into an appropriate output.

In neurobiology, system identification has been applied to a variety of sensory systems, ranging from
insects to vertebrates. Depending on the level of abstraction, the identified neural models vary from
detailed mechanistic models to purely phenomenological models.

The workshop will provide a state of the art forum for discussing methods of system identification applied
to the visual, auditory, olfactory and somatosensory systems in insects and vertebrates.

The lack of a deeper understanding of how sensory systems encode stimulus information has hindered
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the progress in understanding sensory signal processing in higher brain centers. Evaluations of various
systems identification methods and a comparative analysis across insects and vertebrates may reveal
common neural encoding principles and future research directions.

The workshop is targeted towards systems, computational and theoretical neuroscientists with interest in
the representation and processing of stimuli in sensory systems in insects and vertebrates.

References:

1. Vasilis Z. Marmarelis (2004). Nonlinear Dynamic Modeling of Physiological Systems. Wiley-IEEE
Press, Hoboken, NJ, 2004.

2. Wu, M., David, S., & Gallant, J. (2006). Complete Functional Characterization of Sensory Neurons
by System Identification. Annual Review of Neuroscience, 29, 477-505.

3. Ljung, L. (2010). Perspectives on System ldentification, Annual Reviews in Control, 34 (2010), 1-12.

W6  Methods of Information Theory in Computational Neuroscience
Presser, Room Gaines Auditorium, Day(s): Wed & Thu, 9:00:18:00
Todd Coleman, UCSD, San Diego, CA, USA
Michael Gastpar, EPFL, Lausane, Switzerland
Conor Houghton, Trinity College, Dublin, Ireland
Aurel Lazar, Columbia University, New York, NY, USA
Simon Schultz, ICL, London, UK
Tatyana Sharpee, Salk Institute, San Diego, USA

Methods originally developed in Information Theory have found wide applicability in computational neu-
roscience. Beyond these original methods there is a need to develop novel tools and approaches that are
driven by problems arising in neuroscience.

A number of researchers in computational /systems neuroscience and in information/communication the-
ory are investigating problems of information representation and processing. While the goals are often the
same, these researchers bring different perspectives and points of view to a common set of neuroscience
problems. Often they participate in different fora and their interaction is limited.

The goal of the workshop is to bring some of these researchers together to discuss challenges posed by
neuroscience and to exchange ideas and present their latest work.

The workshop is targeted towards computational and systems neuroscientists with interest in methods of
information theory as well as information/communication theorists with interest in neuroscience.

References:

1. C.E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27,
pp. 379-423 and 623-656, 1948,

2. Milenkovic, O., Alterovitz, G., Battail, G., Coleman, T. P., et al., Eds., Special Issue on Molecular
Biology and Neuroscience, IEEE Transactions on Information Theory, Vol. 56, No. 2, 2010.

3. Dimitrov, A.G., Lazar, A.A. and Victor, J.D., Information Theory in Neuroscience, Journal of Compu-
tational Neuroscience, Vol. 30, No. 1, pp. 1-5, Special Issue on Methods of Information Theory.
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W7  Modern evolutionary algorithms in computational neuroscience : tools to parame-
terize, explore model properties & design model structures

Evans, Room Basement C, Day(s): Wed, 9:00:18:00

Benoit Girard, UPMC/CNRS, Paris, France

Denis Sheynikhovich, UPMC/CNRS, Paris, France
Jean-Baptiste Mouret, UPMC/CNRS, Paris, France
Stephane Doncieux, UPMC/CNRS, Paris, France

In the last 10 years, evolutionary algorithms (EA) have been occasionally used as tools to help param-
eterizing computational models of the brain. As models grow more and more in complexity, manually
adjusting parameters become unreasonable, while automatic approaches, like EA, can provide accept-
able solutions. Modern EA can also help computational neuroscience beyond optimization: the use of
multiple-n-objectives EA (MOEA) allows to find multiple trade-n-off solutions to the studied problem,
revealing intrinsic properties of the problem itself, and thus actively participating in the investigation
process. Modern generative EA can also be used to fully generate the structure of brain networks mod-
els based on known anatomical and electrophysiological data and thus directly participate in the model
design.

The goal of this workshop is to gather neuroscientists around the current use of EA in computational
neuroscience, to advertise the possibilities of this approach, as well as to discuss the emerging and future
applications of EA in our field.

Confirmed speakers:

A. Korngreen (Bar-llan University, Israel) Optimizing ion channel models using a parallel genetic
algorithm on graphical processors.

D. Jaeger (Emory University, USA) Using particle swarm evolutionary algorithm to improve ion
channel kinetics.

J.-C. Quinton (Pascal Institute / Polytech Clermont-Ferrand, France) Tuning and learning with evo-
lutionary methods: anticipatory representations and dynamic neural fields.

A. J. Nevado-Holgado (University of Oxford, UK). Multiobjective evolutionary algorithms to fit
realistic computational models of brain networks to extensive experimental data.

J.-B. Mouret (Université Pierre & Marie Curie / CNRS, France) Recent advances in evolutionary
algorithms with examples from neuro-evolution.

J. Liénard (Université Pierre & Marie Curie / CNRS, France) Integration of detailed primate anatom-
ical and electrophysiological data in a model of the basal ganglia using multi-objective
evolutionary algorithms.
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W8  Principles of motor pattern generation: experiments and modeling
Evans, Room Basement C, Day(s): Thu, 9:00:18:00
Carmen Canavier, LSU HSC, New Orleans, LA, USA
Andrey Shilnikov, GSU, Atlanta, USA

A central pattern generator (CPG) is a neural microcircuit of cells that are capable of producing rhythmic
patterns that underlie motor behaviors such as heartbeat, respiration, and locomotion in animals and
humans. These patterns do not require sensory input or external patterned inputs, but rather are an
emergent property of the network. Burst firing activity is usually associated with CPG activity. In
some cases intrinsically or conditionally bursting pacemaker neurons are thought to be responsible for
the rhythm, whereas in other cases the basic pattern generating unit is though to be a half center
oscillator in which synaptic escape or release of each oscillator in turn drives the network rhythm. Here
we focus both on the mechanisms for robustness in dedicated CPGs and for flexibility in multifunctional
CPGs that can produce distinct rhythms, such as swimming versus crawling, and alternation of blood
circulation patterns in leeches. Robustness to heterogeneity and noise of individual modes allows for phase
constancy under a wide variety of conditions. Flexibility may be attributed to switching between rhythms
by input-dependent switching between attractors of the CPG. We will focus on experimental approaches,
often using the dynamic clamp, combined with various mathematical and computational techniques for
understanding the underlying principles sub-serving pattern generation.

Speakers: Allen Selverston (UCSD)

Akira Sokurai (GSU) "A natural example of different circuit architectures for analogous behaviors in
different species"

Thomas Nowotny (Sussex, UK) "Central patterns generation with heteroclinic orbits"

Maxim Bazhenov (UCR)

Erik Shwerwood (Utah)

Brian Mulloney (UC Davis)

Carmen Canavier (LSU)

Andrey Shilnikov (GSU) "Bifurcation of polythythmic patterns in 3-cell bursting motifs"

W9  Dynamics of rhythm generation
Bullock, Room G9, Day(s): Wed & Thu, 9:00:18:00

Roman Borisyuk, University of Plymouth, Plymouth, UK

Ronald Calabrese, Emory University, Atlanta, GA
Alan Roberts, University of Bristol, Bristol, UK
Gennady Cymbalyuk, Georgia State University, Atlanta, GA
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The ability of distinct anatomical circuits to generate patterns of rhythmic activity is widespread among
vertebrate and invertebrate species. These patterns correspond to different functions like motor behaviors
and odor recognition and pathological events like seizure episodes. The dynamics of the circuits producing
such patterns are based on the basic principles conserved across phyla. For example, the swimming
behavior of the tadpole is sporadic and transient, lasting for a few tens of periods. In contrast the heart-
beating of the leech must sustain through its life and the pattern of the activity stays constant even in
the variable environment.

We would like to bring together experts applying experimental approaches and the methods developed in
the neuroscience, neurophysics, neuro-informatics, neuroethology, and the bifurcation theory to determine
the basic principles of the transient and steady dynamics of rhythm generation from different phyla.

Speakers:

Barreto, Ernest (George Mason University, School of Physics, Astronomy) - lon concentration dynamics
as a unifying mechanism for bursting of many different morphologies

Borisyuk, Roman (University of Plymouth, School of Computing, Communication, and Electronics) -
Calabrese, Ronald (Emory University, Biology Department) - Harnessing experimentally observed individ-
ual variation in neuronal network models.

Cohen, Netta (University of Leeds, School of Computing) -

Cymbalyuk, Gennady (Georgia State University, Neuroscience Institute) -

Dzakpasu, Rhonda (Georgetown University, Dept. of Physics) - The effects of synaptic potentiation
modulation on in vitro neuronal network dynamics

Edwads, Donald (Georgia State University, Neuroscience Institute) - A neuromechanical model of loco-
motion in crayfish

Nadim, Farzan (New Jersey Institute of Technology, Dept. of Mathematical Sciences) -

O’'Donovan, Michael (NIH/NINDS, Developmental Neurobiology Section) -

Prinz, Astrid (Emory University, Biology Department) -

Prilutsky, Boris (GaTech, School of Applied Physiology) -

Roberts, Alan (University of Bristol, School of Biological Sciences) - Starting, running and stopping the
tadpole swimming network

Rybak, llya (Drexel University, Dept. of Neurobiology and Anatomy) -

Sakurai, Akira (Georgia State University, Neuroscience Institute) - Potential mechanisms underlying ter-
mination of a transient rhythmic motor behavior

Spardy, Lucy (University of Pittsburgh, Dept. of Mathematics) -

Wiggins, Tim (University of Minnesota, Dept. of Neuroscience, Masino's Lab) -

Zochowski, Michal (Univeristy of Michigan, Dept. of Physics) -

W10 Disease dynamics: Computational modeling of neurological diseases
Evans, Room Basement AB, Day(s): Thu, 9:00:18:00
Sharmila Venugopal, UCLA, Los Angeles, CA, USA
Ranu Jung, FIU, Miami, FL, USA
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The goal of this workshop is to bring together a diverse group of neuroscientists to discuss and present
recent advances in computational modeling of dynamical disease phenomena. Computational modeling
holds great promise in improving our understanding of disease dynamics and in designing pharmacolog-
ical, surgical and neuroprosthetic interventional strategies for neurological disorders. In this workshop,
we will focus on how computational models can enhance our understanding of disease dynamics and
predict emergence of pathological excitability states. Examples of pathological excitability states include
hyper-excitability of sensorimotor reflex circuits leading to spasticity, hyper-synchrony of cortical networks
leading to epileptiform activity and Parkinsonian rhythms. The models discussed will represent cellular,
network and behavioral disease constructs encompassing multiple levels of nervous system organization.
The workshop will promote cross-talk on pathogenic mechanisms in multiple neurological conditions while
providing opportunities for an open dialog amongst experimental, computational and clinical neuroscien-
tists to further stimulate the utilization of computational models in predicting disease dynamics.

Speakers:

Ranu Jung, Ph.D. (Florida International U) - Introduction to the Workshop

Steven J. Schiff, M.D, Ph.D. (Penn. State U)

lvan Soltesz Lab (U of California Irvine)

Sharmila Venugopal, Ph.D. (U of California Los Angeles) - Modeling multiple channelopathies in Amy-
otrophic Lateral Sclerosis

Sheriff M Elbasiouny, Ph.D. (Northwestern University)

Jonathan Rubin, Ph.D. (U of Pittsburg)

Alla Borisyuk, Ph.D. (U of Utah)

Michael Hasselmo Lab (Boston U)

W11 Neuromechanical modeling of posture and locomotion
Bullock, Room 102 W, Day(s): Wed, 9:00:18:00

Boris I. Prilutsky, Georgia Institute of Technology, Atlanta, GA, USA
Alexander N. Klishko, Georgia Institute of Technology, Atlanta,GA, USA

Neuromechanics is a new, quickly growing field of neuroscience research that merges neurophysiology,
biomechanics and motor control and aims at understanding living systems and their elements through
interactions between their neural and mechanical dynamic properties. Although Neuromechanics is not
limited by computational approaches, neuromechanical modeling is a powerful tool that allows for inte-
gration of massive knowledge gained in the past several decades in organization of motion related brain
and spinal cord activity, various body sensors and reflex pathways, muscle mechanical and physiological
properties and detailed quantitative morphology of musculoskeletal systems. Recent work in neurome-
chanical modeling has demonstrated advantages of such an integrative approach and led to discoveries of
new emergent properties of neuromechanical systems. The goal of this workshop is to bring together neu-
romechanics researchers, discuss new developments in the field of neuromechanical modeling and inform
Computational Neuroscience community of this new and exciting area of research.
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Speakers:

Shinya Aoi, PhD, Department of Aeronautics and Astronautics, Kyoto University, Japan

Thomas J. Burkholder, PhD and Nathan E. Bunderson, PhD. School of Applied Physiology, Georgia
Tech, USA

Donald H. Edwards, Jr, PhD, Neuroscience Institute, Georgia State University, USA

Gennady Cymbalyuk, PhD, Neuroscience Institute, Georgia State University, USA

Sergey N. Markin, PhD, Department of Neurobiology and Anatomy, Drexel University College of Medicine,
USA

Jonathan Rubin, PhD, Department of Mathematics, University of Pittsburgh, USA

Lena Ting, PhD, Department of Biomedical Engineering, Georgia Tech/Emory, USA

Sergiy Yakovenko, PhD, Center for Neuroscience, West Virginia University, USA

W12 Postdoc and Student Career Strategy Workshop
Bullock, Room G9, Day(s): Wed, 18:00:20:00

Nathan W. Schultheiss, Boston University, Boston, MA, USA

The computational neuroscience (CNS) community is both international and interdisciplinary, and there
are many possible roads to success in the field. However, the challenges faced by current or soon-to-be
postdocs are also diverse, and excellent mentorship from primary investigators is an invaluable resource
for the development of future leaders in research or industry. This workshop is intended to provide
postdocs and students in CNS an opportunity to hear about several very successful career paths and/or
strategies from current leaders in the CNS community. The workshop will consist of testimonial insights
from junior faculty having recently transitioned from postdoc status, researchers working outside of their
home countries, researchers working in departments other than their primary field of training, and senior
faculty who have witnessed and steered search committees, reviewing boards, and indeed the field of
computational neuroscience itself through both 'fat’ and 'lean’ funding periods and through its exciting
continued development. Postdocs and students are encouraged to ask questions of the speakers and
participate in discussion of topics of universal interest or specific concerns. (Our own concerns are often
more universal that we realize until we voice them!) Given the considerable participation in recent years,
this year after a general discussion, we may have separate panels to specifically address student topics
and postdoc topics.

Recent faculty mentors have included:
Jim Bower Tim Lewis  Tobias Niemann  Dieter Jaeger
Rob Butera  Tay Netoff  Frances Skinner  John White
Ron Calabrese Astrid Prinz Tomasz Smolinski

Our continued thanks to you!!
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Posters

Link to poster abstracts on BMC Neuroscience web site:
http://www.biomedcentral.com/bmcneurosci/supplements/13/S1

Note: Asterisk* indicates contact author.

Sunday Posters
Posters P1 — P63

P1 Spike-Timing Dependent Plasticity Facilitates Excitatory/Inhibitory Dysbalances in
Early Phases of Tinnitus Manifestation

Christoph Metzner!?*, Fabian Guth', Achim Schweikard', and Bartosz Zurowski?

Lnstitute for Robotics and Cognitive Systems, University of Luebeck, 23538 Luebeck, Germany
2Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538 Luebeck,
Germany

3Department of Psychiatry, University Clinics Schleswig-Holstein, 23538 Luebeck, Germany

P2 Information theoretic and machine learning approaches to quantify non-linear visual
feature interaction underlying visual object recognition

Alireza Alemi-Neissi'*, Carlo Baldassi®?, Alfredo Braunstein®3, Andrea Pagnani?, Riccardo
Zecchina?3, and Davide Zoccolan®

L Area di Neuroscienze, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
2Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Torino, Italy
3Human Genetic Foundation (HuGeF), Torino, Italy

P3 Model of a Sparse Encoding Neuron
Praveen Yenduri'*, Anna Gilbert?, and Jun Zhang?

LDepartment of EECS, University of Michigan, Ann Arbor, Ml 48109, USA
2Department of Mathematics, University of Michigan, Ann Arbor, Ml 48109, USA
3Department of Psychology, University of Michigan, Ann Arbor, Ml 48109, USA
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P4

P5

P6

P7

P8

P9

70

Modeling Cuttlefish Behavioural Chromatophore Response
Zach Zboch!, James Peterson®*

! Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
2Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA

Temperature-fastened Sodium inactivation accounts for energy efficient cortical ac-

tion potentials in mammalian brains

1,2

Yuguo Yu

! Center for Computational Systems Biology, Fudan University, Shanghai, 200433, China
2School of Life Sciences, Fudan University, Shanghai, 200433, China

Properties of cortical axons for energy efficient cortical action potentials

Yuguo Yul2*

L Center for Computational Systems Biology
2School of Life Sciences, Fudan University, Shanghai, 200433, China

Statistics of natural scene structures and scene categorization
Xin Chen!, Weibing Wan'!, and Zhiyong Yang!3*

L Brain and Behavior Discovery Institute,
2Department of Ophthalmology, and
3Vision Discovery Institute, Georgia Health Sciences University, Augusta, Georgia, 30912, USA

Statistics of eye movements in scene categorization and scene memorization
Xin Chen'*, Weibing Wan!, and Zhiyong Yang!??3

L Brain & Behavior Discovery Institute,
2Department of Ophthalmology, and
3Vision Discovery Institute, Georgia Health Sciences University, Augusta, GA, 30912, USA

A visual code book—structured probability distributions in natural scenes
Weibing Wan!, Zhiyong Yang!®3*

LBrain and Behavior Discovery Institute
2Department of Ophthalmology
3Vision Discovery Institute, Georgia Health Sciences University, Augusta, Georgia, 30912, USA



P10

P11

P12

P13

P14

P15

P16

Features of chaotic activity in a balanced network of Type Il neuronal oscillators
Maximilian Puelma Touzel'?3* Michael Monteforte!>3, and Fred Wolf!:2:3

YMax Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
2Faculty of Physics, Georg-August-University, Goettingen, Germany
3Bernstein Center for Computational Neuroscience, Goettingen, Germany

Synaptic activations of neuronal populations in the thalamocortical loop from LFP
using kCSD and ICA

Szymon Leski*, Helena Glabska, Jan Potworowski, and Daniel K Wojcik
Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland

Spike threshold dynamics reshape the phase response curve and increase the degree
of synchronization among neurons coupled by excitatory synapses

Michael Farries*, Charles J. Wilson

Department of Biology, University of Texas San Antonio, San Antonio, TX 78240, USA

A high-level, simulator independent, Python library for simulating small networks of
multicompartmental neurons

Michael Hull*, David Willshaw
Institute for Adaptive and Neural Computation, University of Edinburgh, EH8 9AB, UK

Signal analysis of whole-body shortening behavior in Hirudo verbana
Benjamin Migliori'*, Chris Palmer?, and William Kristan?

! Department of Physics, University of California San Diego, La Jolla, CA 92092, USA
2Department of Neuroscience, University of California San Diego, La Jolla, CA 92092, USA

Haloperidol effects on striatal dopamine and DOPAC levels and subcellular distribu-
tion

Lane Wallace*

Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA

General anaesthetics induce tonic inhibition and modulate the gain of neural popu-
lations : a modeling study

Axel Hutt*, Thomas Voegtlin
INRIA CR Nancy - Grand Est, C520101, 54603 Villers-Is-Nancy Cedex, France
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P17

P18

P19

P20

P21

P22

P23

72

Optimal Information Encoding for Multiple, Simultaneously Presented Stimuli

1,2

Jan Pieczkowskil'?*, Lawrence York?, Jeanette Hellgren Kotaleski'®>, and Mark van Rossum?

! Department of Computational Biology, CSC, Royal Institute of Technology, Stockholm, Sweden
2Department of Informatics, Edinburgh University, Edinburgh, EH8 9AB, UK
3Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

Action Recognition Using Natural Action Structures

1,2

Xiaoyuan Zhu'**, Zhiyong Yang!?, and Joe Tsien!?

LBrain and Behavior Discovery Institute, Georgia Health Sciences University, Augusta, Georgia, 30912,
USA

2Department of Neurology, Georgia Health Sciences University, Augusta, Georgia, 30912, USA
3Department of Ophthalmology, Georgia Health Sciences University, Augusta, Georgia, 30912, USA

Variability of inter-syllable gaps challenges the branched-chain model of sequence
production in Bengalese finches.

Kristofer Bouchard!3, Anand Kulkarni?*, Michael Brainard!, and Todd Troyer?

! Department of Physiology, UCSF, San Francisco, CA 94143, USA
2Biology Department and Neurosciences Institute, UTSA, San Antonio, Texas, 78249, USA
3Department of Neurosurgery, UCSF, San Francisco, CA, 94143, USA

Tracking sub-syllabic features in zebra finch song during development
Meagan Woodford*, Matthew Benavides, and Todd Troyer

Biology Department, Neurosciences Institute, UTSA, San Antonio, Texas, 78249

A talkative Potts attractor neural network welcomes BLISS words
Sahar Pirmoradian*, Alessandro Treves

Cognitive Neuroscience Sector, SISSA, Trieste, 34136, Italy

Brain ventricle volume correlates with effortful control in healthy young males

Rongxiang Tang'?, Yi-Yuan Tang?3*

1South Eugene High School, Eugene, OR 97401, USA

2Department of Psychology, University of Oregon, Eugene, OR 97401, USA

3 Texas Tech Neuroimaging Institute and Department of Psychology, Texas Tech University, Lubbock,
TX 79409, USA

— Withdrawn —



P24

P25

P26

P27

P28

P29

Dynamic Bayesian network modeling for intervention mechanism
Yan Sun'?, Yi-Yuan Tang?**

! Research Center of Psychological Development and Education, Liaoning Normal University, Dalian
116029, China

2Psychology Department of Education School, Liaoning Normal University, Dalian 116029, China
3Texas Tech Neuroimaging Institute and Department of Psychology, Texas Tech University, Lubbock,
TX79409, USA

4Institute of Neuroinformatics, Dalian University of Technology, Dalian 116024, China

Coherent spontaneous resting EEG of frontal regions in human brain
Shaowei Xue!, Yu-Qin Deng!, and Yi-Yuan Tang!?*

Yinstitute of Neuroinformatics, Dalian University of Technology, Dalian 116024, China
2 Texas Tech Neuroimaging Institute and Department of Psychology, Texas Tech University, Lubbock,
TX79409, USA

— Withdrawn —

Optical imaging of motor cortical activation using functional near-infrared spec-
troscopy

Nicoladie D Tam'™*

! Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
2Departments of Engineering Technology, Computer Science, and Electrical and Computer Engineering,
University of Houston, Houston, TX, 77204, USA

Derivation of the evolution of empathic other-regarding social emotions as compared
to non-social self-regarding emotions

Nicoladie D Tam*
Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

Computational Modeling of Light Activated lon Channels

Roxana Stefanescu'*, Shivakeshavan Ratnadurai?, Paul R Carney!'?, Pramod Khargonekar?, and
Sachin S Talathi!?

L Department of Pediatrics,
2Department of Biomedical Engineering, and
3Department of Electrical Engineering, University of Florida, Gainesville, FL 32610
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P30

P31

P32

P33

P34

P35
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Genesis of interictal spikes in the CA1: A computational investigation

Shivakeshavan Ratnadurai'*, Roxana Stefanescu?, Pramod Khargonekar?, Paul R Carney!?, and
Sachin S Talathi'?

! Department of Biomedical Engineering,
2Department of Pediatrics, and
3Department of Electrical and Computer Engineering. University of Florida, Gainesville, FL 32610

Computational Modeling of Light Activated lon Channels

Roxana Stefanescu'*, Shivakeshavan Ratnadurai?, Paul Carney'?, Pramod Khargonekar®, and
Sachin S Talathi'?

' Department of Pediatrics, University of Florida, Gainesville, FL 32610
2Department of Biomedical Engineering, University of Florida, Gainesville, FL 32610
3Department of Electrical Engineering, University of Florida, Gainesville, FL 32610

STDP induced synchrony in inhibitory neural networks: Theory and Experiments
Zack B Kagan!, Charles Frazier?®, and Sachin S Talathi®*5*

! Department of Electrical and Computer Engineering,

2Department of Pharmacodynamics,

3Depatment of Pediatrics,

4Department of Biomedical Engineering, and

®Department of Neuroscience, University of Florida, Gainesville, FL 32610

Charge balanced control of seizure like activity in a two dimensional cortical model
Prashanth Selvaraj'*, Andrew Szeri!:?

! Department of Mechanical Engineering, University of California, Berkeley, CA 94703, USA
2 Center for Neural Engineering and Prosthesis, UC Berkeley and UC San Francisco, USA

Critical slowing in a Hodgkin-Huxley neuron near spiking threshold
Alex Bukoski'*, D Alistair Steyn-Ross?, and Moira L. Steyn-Ross?

L College of Veterinary Medicine, University of Missouri, Columbia, MO 65203, USA
2School of Engineering, University of Waikato, Hamilton 3240, New Zealand

Fractal-based linear model of resting state hemodynamic response in fMRI
Wonsang You'*, Sophie Achard?, and Jérg Stadler!

1Special Lab Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
2GIPSA-Iab, CNRS, UMR 5216, Grenoble, France



P36

P37

P38

P39

P40

NeRvolver: A computational intelligence-based system for automated construction,
tuning, and analysis of neuronal models

Emlyne Forren, Myles J Johnson-Gray, Parth Patel, and Tomasz G Smolinski*

Department of Computer and Information Sciences, Delaware State University, Dover, DE 19901, USA

Analyzing conductance correlations involved in recovery of bursting after neuromod-
ulator deprivation in lobster stomatogastric neuron models

Kenneth Shim?!, Astrid Prinz2, and Tomasz G Smolinski*

L Department of Computer and Information Sciences, Delaware State University, Dover, DE 19901, USA
2Department of Biology, Emory University, Atlanta, GA 30322, USA

Modeling Na+- and Ca2+-dependent mechanisms of rhythmic bursting in excitatory
neural networks

llya Rybak!'*, Patrick Jasinski!, Yaroslav Molkov!?, Natalia Shevtsova!, and Jeffrey Smith?

' Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
19129, USA

2Department of Mathematical Sciences, Indiana University — Purdue University Indianapolis, IN 46202,
USA

3Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke,
National Institutes of Health, Bethesda, MD 20892, USA

Analysis of excitatory and inhibitory interactions at high temporal resolution in core
circuits of the respiratory CPG

Yaroslav Molkov!*, Anke Borgmann?3, Ruli Zhang?, Ilya Rybak?, and Jeffrey Smith?

' Department of Mathematical Sciences, Indiana University — Purdue University Indianapolis, IN 46202,
USA

2Zoological Institute, University of Cologne, Cologne, 50674, Germany

3 Cellular and Systems Neurobiology Section, NINDS, NIH, Bethesda, MD 20892, USA

4Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
19129, USA

A model for simulating Local Field Potential in the thalamus of Essential Tremor
patient during deep brain stimulation.

Ishita Basu'*, Daniela Tuninetti’, Daniel Graupe'?, and Konstantin Slavin®

LDepartment of Electrical & Computer Engineering, University of lllinois at Chicago, USA
2Department of Bioengineering, University lllinois at Chicago, USA
3Department of Neurosurgery, University Illinois at Chicago, USA
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P41

P42

P43

P44

P45
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Using model databases to determine dendritic distributions of Ih channels in oriens-
lacunosum /moleculare hippocampal interneurons

3,4 5

Vladislav Sekulict?*, Josh Lawrence®*, and Frances Skinner!?

! Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8

2Toronto, Western Research Institute, University Health Network, Toronto, Ontario, Canada, M5T 258
3Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
59812, USA

ANIH COBRE Center for Structural and Functional Neuroscience, University of Montana, Missoula,
Montana 59812, USA

5 Departments of Medicine (Neurology), Physiology, and IBBME, University of Toronto, Toronto, Ontario,
Canada

A declarative model specification system allowing NeuroML to be extended with
user-defined component types

Robert Cannon'*, Padraig Gleeson?, Sharon Crook®, and Angus Silver?

! Textensor Limited, Edinburgh, UK

2Dept. of Neuroscience, Physiology and Pharmacology, University College London, London, UK
3School of Mathematical and Statistical Sciences, School of Life Sciences, Arizona State University,
Arizona, USA

Motif statistics and spike correlations in neuronal networks
Yu Hu'*, James Trousdale?, Kresimir Josic?3, and Eric Shea-Brown!*

! Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
2Department of Mathematics, University of Houston, Houston, TX, 77204-5001, USA
3Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
4Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA

Speed and Accuracy in Decision Making: Input correlations and performance
Nicholas Cain*, Eric Shea-Brown

Applied Mathematics, University of Washington, Seattle, WA 98388, USA

A simple mechanism for higher order correlations in integrate and fire neurons

David Leen'*, Eric Shea-Brown'?

' Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
2Program in Neurobiology and Behavior, University of Washington, Seattle, WA, 98195, USA



P46

P47

P48

P49

P50

Dendrites equip neurons with a range of resonant frequencies

Jonathan Laudanski', Benjamin Torben-Nielsen?3*, |dan Segev?, and Shihab Shamma*

1Equipe Audition, Departement d’Etude Cognitive, Ecole Normale Superieure, Paris, France
2Edmund and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
3Department of Neurobiology, Hebrew University, Jerusalem, Israel

4Department of Electrical & Computer engineering, University of Maryland, US

Modeling the effects of molecular crowding on cerebellar long term depression
Horace Troy Deans, Fidel Santamaria*

Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA

A neuromechanical computational model of spinal control of locomotion

Sergey Markin'*, Alexander Klishko?, Natalia Shevtsova!, Michel Lemay!, Boris Prilutsky?, and
llya Rybak?

! Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA,
19129, USA

2 Center for Human Movement Studies, School of Applied Physiology, Georgia Institute of Technology,
Atlanta, GA, 30332, USA

Modeling [Ca2+-]o- and [K+]o-dependent oscillations in spinal Hb9 interneurons
Natalia Shevtsoval*, Sabrina Tazerart®?, Laurent Vinay?, Frédéric Brocard?, and llya Rybak!

! Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
19129, USA

2institut de Neurosciences de la Timone (UMR7289), CNRS and Aix-Marseille University, Marseille
13385, France

3Departments of Surgery and Anatomy and Neurobiology, Dalhousie University, Halifax NS B3H 3A7,
Canada

Modeling Dose-dependent Temperature Responses to Methamphetamine
Yaroslav Molkov!*, Dmitry Zaretsky?, Maria Zaretskaia®, and Dan Rusyniak?

! Department of Mathematical Sciences, Indiana University — Purdue University Indianapolis, IN 46202,
USA
2Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202,
USA
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P54

P55
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A closed model for the respiratory system in mammals

Choongseok Park!'*, Yaroslav Molkov?, Alona Ben-Tal?, Natalia Shevtsova*, Jeffrey Smith?, llya
Rybak?*, and Jonathan Rubin!

! Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15260, USA

2Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis,Indianapolis,
IN 46202, USA

3Institute of Information and Mathematical Sciences, Massey University, Auckland, New Zealand
4Drexel University College of Medicine, Philadelphia, PA19129, USA

% Cellular and Systems Neurobiology Section, Laboratory of Neural Control, NINDS, Bethesda, MD 20892-
3700, USA

Can a central pattern generator produce multiple motor patterns? Modeling scratch
rhythms in turtle

Abigail Snyder*, Jonathan Rubin
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA

Synchronizing and desynchronizing effects of nonlinear delayed feedback deep brain
stimulation in Parkinson’s disease

Andrey Dovzhenok!, Choongseok Park!, Robert Worth?, and Leonid Rubchinsky!3*

! Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University
Purdue University Indianapolis, Indianapolis, IN 46202, USA

2Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
3Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202,
USA

Mechanisms of pathological synchrony in Parkinson’s disease induced by changes in
synaptic and cellular properties due to dopamine

Choongseok Park!?*, Leonid Rubchinsky!*

' Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University
Purdue University Indianapolis, Indianapolis, IN 46202, USA

2Present address: Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15260, USA
3Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202,
USA

Biologically realistic excitatory and inhibitory cell properties emerge from a sparse
coding network

Mengchen Zhu'*, Christopher Rozell?

! Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA

2Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332, USA



P56

P57

P58

P59

P60

P61

Role of morphological changes in newly born granule cells of hippocampus after
status epilepticus induced by pilocarpine in hyperexcitability

Julian Tejada’?, Norberto Garcia-Cairasco?, and Antonio Roque!*

1Departamento de Fnsica, FFCLRP, Universidade de Sgo Paulo, Ribeirgo Preto, SP, 14040-901, Brazil.
2Departamento de Fisiologia, FMRP, Universidade de Sgo Paulo, Ribeirgo Preto, SP, 14049-900, Brazil.

Automated model optimization to study spike shape modulation in Layer 2/3 cortical
pyramidal neurons

Michael Vella*, Hugh P.c Robinson

Department of Physiology,Development and Neuroscience, University of Cambridge, Cambridge, CB2
3DY, UK

The role of electrical coupling in the decision to initiate swimming in young frog
tadpoles

Michael Hull'*, David Willshaw!, and Alan Roberts?

Linstitute for Adaptive and Neural Computation, University of Edinburgh, EH8 9AB. UK
2School of Biological Sciences, University of Bristol, BS8 1UG. UK

A model for dynamical switching in tristable perception for visual plaids

Gemma Huguet'*, Jean Michel Hupé?, and John Rinzel'?

Y Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
2CerCo, Toulouse University & CNRS, Toulouse, France
3 Center for Neural Science, New York University, New York, NY, 10003, USA

Divisive feedback can underlie phasic firing but is precise coincidence detection ad-
equately robust?

Xiangying Meng!3, Gemma Huguet®*, and John Rinzel*3

! Biology department, University of Maryland
2 Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
3 Center for Neural Science, New York University, New York, NY, 10003, USA

Local field potentials in the auditory brain stem described by idealized biophysically-
based models of the medial superior olive

Joshua Goldwyn®2*, John Rinzel!?

L Center for Neural Science, New York University, New York, NY 10003, USA
2Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
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Specifying production times in the ACT-R cognitive modeling system using evoked
response potential latency

Daniel Cassenti*, Anthony Ries
Human Research and Engineering Directorate, U.S. Army Research Laboratory, APG, MD 21005, USA

Sunk costs account for rats’ decisions on an intertemporal foraging task
Andrew Wikenheiser'*, A. David Redish?

L Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
2Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA

Monday Posters
Posters P64 — P126

Phase-locking, quasiperiodicity and chaos in periodically driven noisy neuronal mod-
els: a spectral approach

Alla Borisyuk*, Firas Rassoul-Agha
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Cellular and Nuclear Morphology...and Calcium Signaling: Revealing the Interplay
between Structure and Function

Markus Breit!, Peter Bengtson?, Anna Hagenston?, Hilmar Bading?, and Gillian Queisser'*

L Goethe Center for Scientific Computing, Computational Neuroscience Group, University of Frankfurt,
Frankfurt am Main, 60325, GERMANY

2Department of Neurobiology, Interdisciplinary Center for Neuroscience, University of Heidelberg, Hei-
delberg, 68120, GERMANY

A compartmental model of an identified Drosophila larval motoneuron for investi-
gating functional effects of ion channel parameters

Cengiz Gunay'*, Logesh Dharmar!, Fred Sieling"?, Richard Baines®, and Astrid A Prinz!

'Dept. Biology, Emory University, Atlanta, Georgia 30322, USA
2Biomedical Engineering Dept., Georgia Inst. Tech. and Emory Univ., Atlanta, Georgia, USA
3 Life Sciences, University of Manchester, Manchester M13 9PT, UK
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Reducing the maximal calcium conductance in models of the pyloric network after
decentralization prevents recovery

Claire Tang*, Amber Hudson?, and Astrid A Prinz!

! Department of Biology, Emory University, Atlanta, GA 30322, USA
2Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA

Effect of intrinsic membrane conductances on Phase Resetting Curves in a
conductance-based neuron model

Wafa Soofi'*, Astrid A Prinz?

! Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA,
30332, USA
2Department of Biology, Emory University, Atlanta, GA, 30322, USA

Investigating synaptic plasticity in the crab Cancer borealis pyloric circuit and in a
computational pyloric model network database

Santiago Archila*, Astrid A Prinz
Department of Biology, Emory University, Atlanta, Georgia 30329, USA

Paw-shake response and locomotion: Can one CPG generate two different rhythmic
behaviors?

Alexander Klishko'*, David Cofer?, Gennady Cymbalyuk?, Donald Edwards?, and Boris Prilutsky?

L Center for Human Movement Studies, School of Applied Physiology, Georgia Institute of Technology,
Atlanta, GA, USA
2 Neuroscience Institute, Georgia State University, Atlanta, GA, USA

Amplitude modulated photostimulation for probing neuronal network dynamics
Jonathan Newman'*, Tatjana Tchumatchenko?, Ming-Fai Fong!?, and Steve M. Potter!

! Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332/ 30322
2 Center for Theoretical Neuroscience, Department of Neuroscience, Columbia University College of Physi-
cians and Surgeons, New York, NY 10032-2695, USA

3Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30303

Influence of inhibition on encoding vocalizations in the mouse auditory midbrain
Alexander Dimitrov'*, Graham Cummins®, Zachary Mayko?, and Christine Portfors?

! Department of Mathematics, Washington State University Vancouver, Vancouver WA 98686, USA
2School of Biological Sciences, Washington State University Vancouver, Vancouver WA 98686, USA

— Withdrawn —

81



P74

P75

P76

P77

P78

P79

82

Classification and visualization of neural patterns using subspace analysis statistical
methods

Jun Xia', Marius Osan?, Emilia Titan?, Riana Nicolae?, and Remus Osan®**

! Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303

2Statistics and Econometrics Department, Economic Cybernetics, Statistics and Informatics Faculty,
Academy of Economic Studies, Bucharest, Romania

3Management and Marketing Faculty, Artifex University, Bucharest, Romania

4Neuroscience Institute, Georgia State University, Georgia State University, Atlanta, GA, 30303

Evaluation of target search efficiency for neurons during developmental growth
Gloria Sanin!, Emily Su?, Troy Shinbrot?, and Remus Osan!:3*

! Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303
2Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854
3 Neuroscience Institute, Georgia State University, Georgia State University, Atlanta, GA, 30303

Effects of synaptic connectivity inhomogeneities for propagation of activity in neural
tissue

Jie Zhang!, Remus Osan!?*

I Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303
2Neuroscience Institute, Georgia State University, Georgia State University, Atlanta, GA, 30303

Resistance between channels may lead to increased action potential efficiency
Jack H Wilson*, Sorinel A Oprisan
Department of Physics, College of Charleston, Charleston, SC 29466, USA

Bifurcation structure of phase locked modes in Type | excitable cells based on phase
and spike time resetting curves

Sorinel A Oprisan*
Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA

The influence of network structure on neuronal network dynamics
Duane Nykamp*
School of Mathematics, University of Minnesota, Minneapolis, MN USA 55455
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Ih modulates theta rhythm and synchrony in computer model of CA3

Markus Hilscher?*, Thiago C Moulin®, Yosef Skolnick*®, William Lytton*®, and Samuel Ney-
motin?

Uinstitute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
2Neurodynamics Lab, Department of Neuroscience, Uppsala University, Uppsala, Sweden

3 Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

4 Neurosimulation Lab, SUNY Downstate Medical Center, Brooklyn, NY 11203

®Kings County Hospital, Brooklyn, NY 11203

8 CUNY Brooklyn College, Computer Science Department, Brooklyn, NY 11210

Modeling and prediction of conduction delay in an unmyelinated axon
Yang Zhang'*, Dirk Bucher®3, and Farzan Nadim'*

! Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
2The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
3Department of Neuroscience, University of Florida, Gainesville, FL, 32601, USA
4 Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA

Neural mechanism of binding amplitude information of echo sound with its frequency
one in echolocating bat

Yoshitaka Muto!, Yoshiki Kashimori!?*

'Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo 182-8585,
Japan

2 Graduate School of Information Systems, University of Electro-Communications, Chofu, Tokyo, 182-
8585, Japan

Decoding in the dark: extracting information from spontaneous activity in primary
visual cortex

Ifiigo Romero Arandia, Ruben Moreno-Bote*

Foundation Sant Joan de Deu, Parc Sanitari Sant Joan de Deu, 08950 Esplugues de Llobregat, Barcelona,
Spain

Fano factor constancy and scale-invariant sampling in recurrent networks with prob-
abilistic synapses

Ruben Moreno-Bote*

Foundation Sant Joan de Deu, Parc Sanitari Sant Joan de Deu, 08950 Esplugues de Llobregat, Barcelona,
Spain
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Temperature dependent transitions in excitability predicted by an electrodiffusion
model of membrane potential

Juan Melendez Alvarez'*, Erin Mckiernan?, and Marco Arieli Herrera Valdez!?

! Department of Mathematics and Physics, University of Puerto Rico at Cayey, Cayey, PR, 00736
2 Institute of Interdisciplinary Research, University of Puerto Rico at Cayey, Cayey, PR, 00736

— Withdrawn —

GPU Facilitated Unsupervised Visual Feature Acquisition
Blake Lemoine*, Anthony Maida
Center for Advanced Computer Studies, University of Louisiana, Lafayette, LA 70503, USA

— Withdrawn —

Classification of vocalizations by recordings from the auditory midbrain
Dominika Lyzwa'*, Michael J. Hermann?

'Dept. of Nonlinear Dynamics, Max Planck Inst. for Dynamics and Self-Organization, Gtzttingen,
37077, Germany
2 Institute of Perception, Action and Behavior, University of Edinburgh, Edinburgh, EH8 9AB U.K.

Reinforcement learning of 2-joint virtual arm reaching in motor cortex simulation
Samuel Neymotin'*, George Chadderdon!, Cliff C Kerr2, Joseph Francis!, and William Lytton!?

LSUNY Downstate Medical Center; 450 Clarkson Avenue; Brooklyn, NY 11203
2School of Physics, University of Sydney, NSW 2006, Australia
3Kings County Hospital, Brooklyn, NY 11203

CPP alters theta/gamma oscillations in rat hippocampus: simulation and experiment
Mohamed Sherif':23*  Jeremy Barry*, Samuel Neymotin?, and William Lytton?3

' Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY 11203

2 Neurosimulation Lab, SUNY Downstate Medical Center, Brooklyn, NY 11203

3Kings County Hospital, Brooklyn, NY 112032

4Epilepsy, Cognition and Development group at Darmouth Hitchcock Medical Center, Lebanon, NH
03766

Determining information flow through a network of simulated neurons
Cathal Cooney*, Eoin Lynch
Mathematical Neuroscience Lab, School of Maths, Trinity College Dublin, Ireland
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Modeling predicts that parameters shaping action potentials and synaptic responses
differ in pyramidal neurons of the visual and prefrontal cortices

Christina M Weaver'*, Aniruddha Yadav?, Joseph Amatrudo?, Patrick Hof?, and Jennifer Luebke?

1Department of Mathematics, Franklin and Marshall College, Lancaster, PA 17604, USA

2Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York,
NY 10029, USA

3Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118,
USA

What can be learned from high-resolution sleep data using ECoG
Vera Dadok!*, Andrew Szeri'2, Heidi Kirsch?, Jamie Sleigh*, Rochelle Zak®, and Beth Lopour®

! Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

2 Center for Neural Engineering and Prostheses, UC Berkeley and UC San Francisco, CA, USA
3School of Medicine, University of California, San Francisco, CA, 94143 USA

4School of Medicine, University of Auckland, Grafton, Auckland, 1142, New Zealand

®Sleep Disorders Center at UCSF, San Francisco, CA, 94143, USA

6 Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA

Interpretation of seizure evolution pathways via a mean-field cortical model
Vera Dadok!*, Andrew Szeri'?, Heidi Kirsch®, Jamie Sleigh?, and Beth Lopour®

! Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

2 Center for Neural Engineering and Prostheses, UC Berkeley and UC San Francisco, CA, USA
3School of Medicine, University of California, San Francisco, CA, 94143, USA

4School of Medicine, University of Auckland, Grafton, Auckland, 1142, New Zealand
®Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA

Optimal Neural coding in networks of heterogeneous neurons
Jorge F Mejias!'?*, Andre Longtin!?

1Department of Physics, University of Ottawa, Ottawa, KIN 6N5 Ontario, Canada
2 Centre for Neural Dynamics, University of Ottawa, Ottawa, KIN 6N5 Ontario, Canada

Spike Train Distance Metric Reveals Plasticity in Discrimination of Salient Calls by
Putative Excitatory Cells of the Auditory Cortex

Charles Zhao'*, Frank Lin?, and Robert C Liu®

! Biomedical Engineering Graduate Program, Coulter Department of Biomedical Engineering at Georgia
Institute of Technology and Emory University, Atlanta, GA 30332, USA

2Interdisciplinary Bioengineering Graduate Program, Coulter Department of Biomedical Engineering at
Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA

3Department of Biology, Emory University, Atlanta, GA 30322, USA
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Heterogeneous short-term plasticity enables spectral separation of information in the
neural spike train

Felix Droste!*, Tilo Schwalger?, and Benjamin Lindner!?

1 Bernstein Center for Computational Neuroscience, Berlin, 10115, Germany
2 Institute for Physics, Humboldt-Universitat zu Berlin, Berlin, 12489, Germany

An Open Architecture for the Massively Parallel Emulation of the Drosophila Brain
on Multiple GPUs

Lev Givon*, Aurel A. Lazar

Department of Electrical Engineering, Columbia University, New York, NY 10027, USA

Conductance interaction identification by means of Boltzmann distribution and mu-
tual information analysis in conductance-based neuron models

Roberto Santana'*, Concha Bielza?, and Pedro Larrafiaga®

! Department of Computer Science and Artificial Intelligence, University of the Basque Country, Spain.
2Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Spain

A minimal model for a slow pacemaking neuron
Alexey Kuznetsov!*

! Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University
Purdue University Indianapolis, Indianapolis, IN 46202, USA
2Nonlinear dynamics department, Institute of Applied Physics, RAS, Nizhny Novgorod 603950, Russia

Impulse dynamics of coupled synchronous neurons
Epaminondas Rosa Jr.*, Samuel Krueger

Department of Physics, lllinois State University, Normal, IL 61790, USA

Encoding of touch location and intensity by neurons of the medicinal leech Hirudo
medicinalis

Friederice Pirschel*, Jutta Kretzberg

Computational Neuroscience, Institute of Biology and Environmental Sciences, University of Oldenburg,
D-26111 Oldenburg, Germany

Automated quantification of optokinetic responses based on head-movement
Friedrich Kretschmer, Jutta Kretzberg*

Computational Neuroscience, Institute of Biology and Environmental Sciences, University of Oldenburg,
D-26111 Oldenburg, Germany
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Behaviour Informatics: data integration for greater understanding of human and
animal behaviour

Ansgar Koene*

Brain Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan

Detecting Vibration Source for the Orientation Behavior of Sand Scorpions
Eunseok Jeong, Daeeun Kim*

Biological Cybernetics, School of Electrical and Electronic Engineering, Yonsei University, Shinchon,
Seoul, 120-749, South Korea

Low-frequency EEG correlates of fMRI in the resting state

Joshua Grooms'*, Garth Thompson!, Hillary Schwarb?, Eric Schumacher?, Regina Schmidt?,
Charles M Epstein?, and Shella Keilholz!

! Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, GA 30306, USA
2School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, USA

3 Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA

4 Neurology, Emory University Hospital, Atlanta, GA 30322, USA

Data driven analysis of low frequency spatio-temporal dynamics in resting state MRI
(rsMRI) data

Martha Willis'*, Lukas A Hoffmann?, Alessio Medda!, and Shella Keilholz?

! Georgia Tech Research Institute, Atlanta, GA, 30306, USA
2Emory University and Georgia Institute of Technology, Atlanta, GA 30306, USA

Testing entropy-based search strategies for a visual classification task
Liliya Avdiyenko*, Nils Bertschinger, and Juergen Jost

Max Planck Institute for Mathematics in the Sciences, Leipzig, 04103, Germany

Lethality of Complex Neuronal Network in Caenorhabditis elegans Nervous System
based on Cell Attacks

Kim Seongkyun, Hyoungkyu Kim, and Jaeseung Jeong™*

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST),
Daejeon 305-701, South Korea
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Individual Gain/Loss Attitude, Conditional Cooperation, and Random Shifting in a
Public Goods Game

Dongil Chung!?*, Jaeseung Jeong?

YWVirginia Tech Carilion Research Institute, Roanoke, VA, USA

2Salem Veteran Affairs Medical Center, Salem, VA, USA

3Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea

Background firing rate affects the signal transfer of behavior locked input patterns
from Purkinje cells to the cerebellar nuclei

Selva Maran'*, Ying Cao?, Detlef Heck?, and Dieter Jaeger!

! Department of Biology, Emory University, Atlanta, Georgia, 30322, USA
2Department of Anatomy and Neurobiology, UTHSC, Memphis, Tennessee, 38163, USA

Modeling the Chemical Dynamics of Chloride lon Indicators
Alexander Redford'*, Alexander Dimitrov?, and Susan Ingram?

I Department of Mathematics, Washington State University, Vancouver WA 98686, USA
2Department of Neurological Surgery, Oregon Health & Science University, Portland OR 97239, USA

Individual differences in temperaments traits and complex network properties of
fMRI

Sunghyon Kyeong*, Won Sup Kim, and Dong-Uk Hwang

Division of Computational Sciences in Mathematics, National Institute for Mathematical Sciences, Dae-
jeon, Republic of Korea

Modeling frequency-dependent action potential failures in CA3 pyramidal cell axons
Ximing Li, Bill Holmes*
Department of Biological Sciences, Neuroscience Program, Ohio University, Athens, OH 45701, USA

Improved conditions for the generation of beta oscillations in the subthalamic
nucleus-globus pallidus network

Alex Pavlides'*, S. John. Hogan?, and Rafal Bogacz®

L Bristol Centre for Complexity Sciences and Department of Computer Science, University of Bristol
2Department of Engineering Mathematics, University of Bristol
3Department of Computer Science, University of Bristol
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Dynamics of large-scale neuronal networks of the human cortex functional connec-
tivity

1,2% 1,23

Vesna Vuksanovic'#*, Philipp Hoeve

L Technische Universitit Berlin, Germany
2Bernstein Center for Computational Neuroscience Berlin, Germany
3 Northeastern University, Boston, Massachusetts 02115, US

Adaptive Control of 2-wheeled balancing robot by two hemispheric cerebellar neu-
ronal network model

Pinzon-Morales Ruben*, Yohei Ohata, and Yutaka Hirata

Dept. Computer Science, Chubu University Graduate School of Engineering, Kasugai, Aichi, 487-8501,
JAPAN

Reaction-Diffusion Modeling in the NEURON Simulator
Robert Mcdougal'*, Yosef Skolnick?3, James Schaff*, William Lytton®?, and Michael Hines!

! Department of Neurobiology, Yale University, New Haven, CT 06520, USA

2Department of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203,
USA

3Department of Computer Science, CUNY Brooklyn College, Brooklyn, NY 11210, USA

4 Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT 06030,
USA

5Kings County Hospital, Brooklyn, NY 11203, USA

Same ion channel populations and different excitabilities: Beyond the conductance-
based model

Marco Herrera-Valdez!2:3*

! Department of Mathematics, University of Arizona, Tucson, AZ, 85719
2Department of Mathematics and Physics, University of Puerto Rico at Cayey, Cayey, PR, 00736
3Institute of Interdisciplinary Research, University of Puerto Rico at Cayey, Cayey, PR, 00736

From spinal cord to hippocampus: links between bifurcation structure, ion channel
expression, and firing patterns in a variety of neuron types

Erin Mckiernan'*, Marco Arieli Herrera Valdez!?

Yinstitute of Interdisciplinary Research, University of Puerto Rico at Cayey, Cayey, PR, 00736
2Department of Mathematics and Physics, University of Puerto Rico at Cayey, Cayey, PR, 00736
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Neuronal avalanches and the cortico-striatal network
Jovana J Belic’?*, Andreas Klaus®*, Dietmar Plenz*, and Jeanette Hellgren-Kotaleski'3

Y Computational Biology, Royal Institute of Technology (KTH), Stockholm, 106 91, Sweden
2Bernstein Center Freiburg, University of Freiburg, Freiburg, 79104, Germany

3Department of Neuroscience, Karolinska Institutet (Kl), Stockholm, 171 77, Sweden

4Section on Critical Brain Dynamics, National Institute of Mental Health (NIH), Bethesda, USA

Gamma band LFP in mouse barrel cortex is coupled to respiratory rhythm
Junji lto'*, Snigdha Roy?, Ying Cao?, Sonja Gruen'?, and Detlef Heck?

Linstitute of Neuroscience and Medicine (INM-6), Forschungszentrum J'lich, J'lich, Germany
2Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis,
TN, USA

3 Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany

Bistable persistent spiking of layer Il and layer V medial entorhinal cortical neurons
during theta frequency oscillations in vitro

Nathan W. Schultheiss*, Michael E Hasselmo
Psychology; Center for Memory and Brain, Boston University, Boston, MA 02215, USA

— Withdrawn —

Cell Assembly Detection with Frequent Item Set Mining
Christian Borgelt!, David Picado!, Denise Berger?, George Gerstein®, and Sonja Gruen**

YEuropean Centre for Soft Computing, Calle Gonzalo Gutiérrez Quirds s/n, 33600 Mieres (Asturias),
Spain

2Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Roma,
Italy

3Dept. of Neuroscience, 215 Stemmler Hall, University of Pennsylvania, Philadelphia PA 19104, USA
4Institute of Neuroscience and Medicine (INM-6), Research Center Jiilich, Jiilich, Germany

5 Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany

Tuesday Posters
Posters P127 — P189
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P128

P129

P130

P131

P132

Comparing the spatio-temporal organization of joint spiking and local field potential
oscillations in motor cortex

Michael Denker'*, Lyuba Zehl!, Thomas Brochier?, Alexa Riehle?#, and Sonja Gruen!:3*

Linstitute of Neuroscience and Medicine (INM-6), Forschungszentrum Jiilich, Germany

2 Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS - Aix Marseille Univ., Marseille, France
3 Theoretical Systems Neurobiology, RWTH Aachen University, Germany

4RIKEN Brain Science Institute, Wako-shi, Japan

Turing instabilities in a mean field model of electrocortical activity
Lennaert van Veen*, Kevin Green

Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4, Canada

Convergence analysis of efficient online learning in Bayesian spiking neurons

Andre van Schaik!'*, Levin Kuhlmann?, Michael Hauser-Raspe!, Jonathan Manton?, Jonathan
Tapson!, and David Grayden?

YMARCS Institute, University of Western Sydney, Penrith, Australia
2NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of
Melbourne, 3010, Victoria, Australia

STDP encodes oscillation frequency in the connections of recurrent networks of
spiking neurons

Robert Kerr!:2*, Anthony N Burkitt!>*, Doreen Thomas?, and David Grayden®?

' NeuroEngineering Lab, Dept. Electrical & Electronic Engineering, University of Melbourne, VIC 3010,
Australia

2 Centre for Neural Engineering, University of Melbourne, VIC 3010, Australia

3Dept. of Mechanical Engineering, University of Melbourne, VIC 3010, Australia

4Bionics Institute, 384 Albert St., East Melbourne, VIC 3002, Australia

Eye contact, a fundamental building block of social behavior, engages single unit
activity in the monkey amygdala

Clayton P Mosher!'*, Prisca Zimmerman?, and Katalin Gothard!?

L Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ 85724, USA
2Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA

Variations in spike times
Conor Houghton™?*, James Gillespie®

LSchool of Mathematics, Trinity College Dublin, Dublin 2, Ireland
2Department of Computer Science, University of Bristol, BS8 1UB, England

91



P133

P134

P135

P136

P137

P138

92

A biophysically realistic computer model of Alzheimer pathology to guide the devel-
opment of symptomatic drugs

Patrick Roberts’?*, Athan Spiros!, and Hugo Geerts!

Lin Silico Biosciences, Inc., Lexington, MA 02421, USA
2Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA

Structure of the Afferent Terminals in the Terminal Ganglion of a Cricket and Per-
sistent Homology

Jacob Brown!'*, Tomas Gedeon'?

! Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
2 Center for Computational Biology, Montana State University, Bozeman, MT 59717, USA

An agent-based approach to multi-scale neuronal network simulations using modified
McCulloch-Pitts neurons

Amanda Hanes'*, Lee Poeppelman?, and Jeffery Gearhart!

1Henry M. Jackson Foundation, and
2711 HPW/RHDJ, 2729 R Street, Bldg 837, Wright-Patterson AFB, OH, 45433, USA

What Does Weber’s Law tell us about Spike Statistics?
Harel Shouval'*, Animesh Agarwal?, and Jeff Gavornik®

! Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Hous-
ton, TX, 77030

2School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX,
78229

3Howard Hughes Medical Institute, the Picower Institute of Learning and Memory, Massachusetts Insti-
tute of Technology, Cambridge, MA 02142

Tracking a trajectory of a moving stimulus by spike timing dependent plasticity

Kazuhisa Fujita'?*

! Department of Computer and Information Engineering, Tsuyama National Collage of Technology, Japan
2Department of Engineering Science, University of Electro-Communications, Japan

lonic mechanisms of action potential propagation velocity changes in peripheral C-
fibers. Implications for pain

Sten Andersson*, Marcus Petersson, and Erik Fransen

Department of Computational Biology, School of Computer Science and Communication, KTH Royal
Institute of Technology, Stockholm, Sweden
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Pattern variability in a computational model of respiratory rhythm generation
Joonsue Lee!, Chris Fietkiewicz?*

1Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44107, USA
2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleve-
fand, OH, 44107, USA

— Withdrawn —

Coding, stability, and non-spatial inputs in a modular grid-to-place cell model
David Lyttle!*, Kevin Lin'?, and Jean-Marc Fellous'*

LProgram in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
2Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
3Department of Psychology, University of Arizona, Tucson, AZ 85721, USA

Cav3-KCa3.1 complex enhances detection of facilitating parallel fiber inputs in cere-
bellar Purkinje cells

Jordan Engbers*
Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Modeling realistic extracellular spiking activity in populations of neurons for the
purpose of evaluating automatic spike-sorting algorithms

Espen Hagen'*, Torbjgrn B Ness!, Amir Khosrowshahi'2, Felix Franke3, and Gaute T. Einevoll*

! Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1432 Es,

Norway
2Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94720-3198, USA

3Bio Engineering Laboratory, ETH Z'rich, CH-4058 Basel, Switzerland

Simplified model of the frequency dependence of the LFP’s spatial reach
Szymon Leski?*, Henrik Linden??, Tom Tetzlaff>*, Klas Pettersen?, and Gaute T. Einevoll?

! Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
2CIGENE, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences,
As, 1432, Norway

3 Department of Computational Biology, School of Computer Science and Communication, Royal Institute
of Technology (KTH), Stockholm, 10044, Sweden

4Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research
Center Jiilich, 52425, Germany
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Axonal anisotropy and connectivity inhomogeneities in 2D networks
Sarah Jarvis’?3* Samora Okujeni’?3, Steffen Kandler’?:3, Stefan Rotter!:?, and Ulrich Egert!:

1 Bernstein Center Freiburg, University of Freiburg, Freiburg, 79104 Germany
2Faculty of Biology, University of Freiburg, Freiburg, 79104 Germany
3Department of Biomicrotechnology, IMTEK, University of Freiburg, Freiburg, 79096 Germany

Adaptation shapes spike train correlations: theory and applications to tinnitus
Gabriel K Ocker2*, Thanos Tzounopoulos®?, and Brent Doiron?*

! Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA

2Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University,
Pittsburgh, PA 15213, USA

3Departments of Otolaryngology and Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15261,
USA

4Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

Taming the model zoo: A unified view on correlations in recurrent networks
Dmytro Grytskyy!, Moritz Helias!**, Tom Tetzlaff', and Markus Diesmann!:?3
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