A neuron can make reliable binary, threshold gate like, decisions if and only if its afferents are synchronized.

Timothée Masquelier, CERCO, UMR5549 CNRS - Université Toulouse 3, France **Matthieu Gilson**, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain

Keywords: threshold gates, McCulloch & Pitts neuron, leaky integrate-and-fire, coincidence detection, synchrony.

1. Introduction

Some binary decisions $y \in \{0, 1\}$ are presumably made by comparing a weighted sum of different factors $S = \sum_i w_i x_i$ to a threshold θ : $y = H(S - \theta)$, where H is the Heaviside step function: $H(x) = \begin{cases} 1 \text{ if } x \ge 1\\ 0 \text{ if } x < 0 \end{cases}$

3. The synchronous regime

- This corresponds to the first neuron model proposed my McCulloch & Pitts in 1943, a.k.a threshold gate.
- Used in the perceptron, and more recently in binary deep neural networks.
- Can a single spiking neuron implement such a function, assuming that x_i are the afferent firing rates?
- We tackled this question using a leaky integrate-and-fire (LIF) neuron with $\tau = 10$ ms.
- Goal: adjust the LIF's threshold so that it fires at least one spike over a period T if $S > \theta$ ("positive condition"), and none otherwise ("negative condition").
- We first assume binary weights.

- The spikes arrive in discrete periodic volleys (with frequency $f_o = 5$ Hz), and with a certain dispersion inside each volley ($\sigma = 10$ ms).
- Threshold=105 causes a hit for the positive condition, and no false alarm for the negative one.

2. The asynchronous regime

4. Receiver operating characteristics

We quantified the classification accuracy using the receiver operating characteristics (ROC):

The asynchronous regime leads to poor accuracy, which

Input spike times are uniformly distributed over [0; T = 1s]. Any threshold will lead to false alarms and/or misses. Yet a threshold gate with $\theta = 1050$ Hz would do the job perfectly!

- increases with T, but very slowly.
- The synchronous regime leads to much better accuracy, which increases with T, but decreases with σ and f_o .

5. Discussion

- If the decision needs to be taken in a reasonable amount of time, only the synchronous regime is viable, and the precision of the synchronization should be in the millisecond range.
- The synchronous regime also does a better job at handling graded and negative weights (not shown).
- We are now exploring more biologically realistic regimes in which only a subset of the afferents are synchronized.
- In the brain, the required synchronization could come from abrupt changes in the environment (e.g., stimulus onset), active sampling (e.g., saccades and microsaccades, sniffs, licking, touching), or endogenous brain oscillations.