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Abstract

Neurons must integrate information from multiple inputs. Information theory provides robust measures of multivariable interdependence, but

traditionally says little about the nature of the interaction. Popular in computational neuroscience, the Information Decomposition of Williams

and Beer decomposes the mutual information into unique, redundant, and synergistic components [1, 2]. Unfortunately, there is no universally

accepted method for its computation. Independently, the quantitative genetics community has developed the Information Delta measures

for detecting non-pairwise interactions in genetic data [4, 5, 6]. This has been exhaustively characterized for discrete variables (common in

genetics), yielding a geometric interpretation of how functions map onto delta-space. We show that the PID and Delta frameworks are largely

equivalent, and results from each are relevant to open questions in the other. For example, we find that the PID approach of [3] addresses the

problem of linkage disequilibrium in genetic data. We map the probability space defined by Bertschinger et al. onto a well-defined plane in the

space of delta measures, and find that the corresponding optimization problem is solved by the previously-characterized function coordinates.

This geometric mapping can thereby both side-step an expensive optimization and characterize the functional relationships between neurons.

Partial Information Decomposition

(i)

Fully
Unique

(ii)

Fully
Redundant

(iii)

Fully
Synergistic

(C)

(A) (B)

Figure 1. (A) Let x, y, z be neurons with discrete states (e.g. resting, spiking). x and y determine z via function f . (B)
The Information Decomposition (adapted from [2]) . The mutual information is decomposed into unique informations
Ux and Uy, redundant information R, and synergistic information S. The system of equations is underdetermined. (C)
Example functions: (i) For z = x, only x contains information about z (i.e. only Ux is nonzero). (ii) For z = x = y, the
information encoded by x and y is fully redundant. (iii) when z is given by the XOR function, the encoded information
is fully synergistic.

The partial information decomposition is defined by [1, 2]:

I({x, y}, z) = Ux + Uy + R + S (1)
I(x, z) = Ux + R (2)
I(y, z) = Uy + R (3)

Note that this set of equations is underdetermined. An additional definition (such as provided by
[3]) is needed to compute these values.

Differential Interaction Information

Consider a set of variables νn (i.e. νn = {x, y, z}). The “information delta” is given by [4, 5]:

∆z(νn) = I(νn) − I(νn \ {z}) = −I(νn \ {z}|z) (4)

These measures can be normalized by the multi-information Ωxyz = Hx + Hy + Hz − Hxyz:

δx = ∆x/Ωxyz (5)

If z = f (x, y) and x, y are i.i.d., then all functions f (x, y) map onto a highly-structured plane[6]. The
delta-coordinates of a function clearly encode similar information as the PID components.
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Figure 2. (A) A geometric interpretation of the Information Deltas, as developed in [6]. (A) Consider neurons with three
discrete states (e.g. resting, spiking, refractory). There are 19,683 possible functions f (x, y) which map onto 105
unique points within a highly-structured plane in δ-space. (B) Sample functions and their mappings onto δ-space.
Functions with a full pairwise dependence on x or y map to oppose lower corners, whereas the fully-synergistic XOR is
mapped to the uppermost corner.

Relationship between the Frameworks

We prove that the delta-coordinates and PID
components are directly related as follows:

S − R =
Ωxyz

2
(δx + δy + δz − 1) (6)

Ux − Uy = Ωxyz(δy − δx) (7)
The delta-space encodes the differences
between PID components intuitively (functions in
the upper corner being highly synergistic, with
the lower corners being highly pairwise).

The optimization of Q in δ⃗-space

One solution to the PID problem was provided by Bertschinger et al.[3], who defined:
Ux = min

q∈Q
I(y, z|x) = max

q∈Q
∆x (8)

This is well-motivated but requires an optimization over the set of probability distributions Q.

Let Ψ be the set of all joint probability distributions of x,y and z. Then we define Q as the set of all
distributions with equal marginal probability distributions p(x, z) and p(y, z):

Q = {q ∈ Ψ|q(x, z) = p(x, z) ∧ q(y, z) = p(y, z)} (9)

We map Q onto delta-space and find that it is constrained to a plane, and that the optimization is
solved by the point where x, y are i.i.d. Coincidentally, these are the delta-coordinates which have
been fully characterized by Sakhanenko et al.[6].

Figure 3. An example mapping of a Bertschinger set Q (defined in [3]) to δ-space. A set Q consists of all probability
distributions p(x, y, z) which share the same marginal distributions p(x, z) and p(y, z). Each Q maps onto a simple
plane in δ-space, and the solution to the optimization problem in [3] (which solves the Information Decomposition)
occurs at a point lying in the previously-characterized δ-plane defined in [6] (as plotted in Figure 2). If the experimental
δ-coordinates were seen to lie in this subspace, we could immediately identify both the decomposition values
Ux, Uy, R, S as well as the corresponding class of functions, without explicitly solving the optimization problem

In addition to developing a method to
computationally perform this mapping, we prove
the following analytically:

1. In any set Q of distributions with equal
marginal distributions p(x, z) and p(y, z), the
delta-coordinates (δx, δy, δz) will be restricted
to a plane. This is true for any alphabet size.

2. For sets Q which include a function, the
solution to the Bertschinger optimization
occurs at the delta-coordinates of said
function (as defined in [6]).

This suggests the following procedure for computing the PID:

1. Given data for a set of variables {x, y, z}, calculate the δ⃗-coordinates.
2. Calculate the nearest Q-plane and its associated function class f .
3. Take the value of ∆x for the function class f and compute the PID. Using the definition of [3],

Ux = ∆x|f and therefore the computation is trivial.

This not only sidesteps the optimization, but additionally provides a candidate function class f
which describes the exact functional relationship between the neurons.
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