
Introduction
Fitting computational, Hodgkin-Huxley-like neuron models to specific cells is a resource 
intensive and time consuming task and is usually done by matching the model against a 
voltage trace or derived features. This typically requires hours of offline processing, thus 
making it impossible to validate the resulting model in the original cell.

Non-linear interaction between parameters are a major impediment to fast, accurate model 
optimisation. Here, we propose a method that uses evolutionary algorithms to design 
voltage clamp stimuli that reduce interactions between parameters, emphasizing 
sensitivity to a target parameter. Using such stimuli, we can reduce fitting time to mere 
minutes, allowing immediate validation and use of the fitted model.

Model fitting
To fit models to live or simulated data, stimuli 
are applied in random order while a genetic 
algorithm (GA) or a differential evolution 
algorithm (DE) minimises the current residual 
within the corresponding observation 
windows. In each epoch, parameters are 
mutated according to one of three schemes 
(unweighted: all parameters are mutated 
equally; graded: mutation rate is proportional 
to parameter influence J

p
 in the next 

observation; target-only: only the parameter 
targeted by the next observation is mutated). 
By biasing exploration towards sensitive 
parameters, the graded and target-only 
mutation schemes lead to swift convergence 
without compromising fit quality.

As a proof of concept, we have attempted to fit 
a model of the Lymnaea stagnalis B1 
motoneuron to synthetic data polluted with 
white noise, using as reference either the 
parameter set used during stimulus 
generation, or a randomly perturbed version.

Satisfied with the performance, we then 
turned to ion channels (rKV1.4 and rKV2.1) 

ectopically expressed in Xenopus oocytes, 
where the assumptions of single-compartment 
models apply. Each channel is modelled with 
two components. To obtain reference values 
for each parameter, we used classical voltage-
clamp step protocols to measure (passive 
parameters) or least-squares fit (active 
parameters) the “true” parameter values.

Stimulus generation
The sensitivity of a model’s output (here, the clamp current I(t)) 
to the value of a given target parameter changes dynamically 
with the  model’s internal state and any applied stimulus. To 
quantify this sensitivity, we approximate the Jacobian J(t) with 
respect to all parameters of interest, and define sensitivity to a 
parameter p as J

p
(t) = ∂/∂p I(t) / |J(t)|. We judge 

stimulus/observation pairs to be highly capable of isolating p 
when they maximise J

p
 either in isolation (e.g. blue “bubble” for 

J
gNa

), or while maintaining a consistent distribution of relative 

sensitivities across all parameters (e.g. purple “cluster” for J
gK

). 

We then artificially evolve such stimulus/observation pairs, 
selecting for high isolation capability and screening for 
robustness to noise and parameter variation.

300 400 500 600 700 800

Time [ms]

-100

-75

-50

-25

0

25

50

V
o
lt

a
g

e 
[m

V
]

0

1

2

3

4

5

6

7

C
u
rre

n
t [n

A
]

Voltage command

Mean sensitivity

gNa

ENa

gK

EK

gl

El

C

Proof of concept
Aggregate results fitting against synthetic data, using a model 
of an invertebrate neuron (Vehovszky, Szabo, Elliott, BMC 
Neurosci, 2005) are shown below. Stimuli were by the “bubble” 
method, and fitting was done with a target-only GA. Traces 
represent the average and worst case deviations from the 
respective target parameter of the best model at each epoch 
across fits, and are smoothed to improve legibility. Note the 
different scales. 
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Base model, no noise, n = 20

Base model, 2 nA white noise, n = 20

Randomised models, 2 nA white noise, n = 40

Upper trace: Worst case; 
Lower trace: Mean + SEM
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Convergence
Standard deviation of 
parameter vectors within 
fitting populations, pooled 
across stimulus sets 
generated with both cluster 
and bubble methods. Fitting 
methods, top: GA with 30% 
crossover probability; 
bottom: DE.

Using the information about 
which parameters are 
influential to a given 
observation has clear 
benefits, as shown by the 
greater convergence with 
graded (DE) and target-only 
(GA and DE) mutation 
schemes.
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MOSTIPS: Single-cell model optimisation 
using stimuli to isolate parameters

Similarity to classical fit
Shown on the left are parameter-space distances between models with the lowest 
fitting cost in each fit and the reference parameter values derived from classical 
voltage clamp protocol fitting, which includes direct measurement (of capacitance 
and leak current, at strongly hyperpolarised membrane potentials) and least-
squares fitting against voltage step families to probe both activation and 
deactivation. Results pooled across stimulus sets generated with both bubble and 
cluster methods. Mutation scheme, top: target-only; bottom: graded. xGA and mGA 
refer to GA with (30%) or without crossover, respectively.

All tested methods arrive at their final parameter values within <100 epochs 
(~100,000 model evaluations). Although there is considerable divergence in the 
parameter values found between methods, results within a given method are largely 
stable across fits (see insets), differing less among each other than from the classical 
reference values. As the data here are pooled across several stimulus sets, this 
suggests that the MOSTIPS and classical fitting methods extract different 
information from the data provided by their respective voltage clamp protocols. 
Although agreement between different methods would be desirable, we consider 
cross-validation, i.e. generalisation against novel data, more important, see below.

Conclusions
By shifting much of the time- and resource-intensive work from 
fitting towards the preparation of stimuli, the MOSTIPS method 
allows fast, reliable model optimisation with small amounts of 
data. The fits demonstrated here are based on just one second 
of stimulation and recording per parameter (6-8, except for the 
Kv2.1x kinetics fit with 28 parameters). Coupled with a 
simulation strategy that makes heavy use of parallel processing 
on a GPU, we arrive at fully optimised models in under ten 
minutes, which allows subsequent use of the model in the exact 
cell it was derived from, e.g. for dynamic clamp experiments 
that require a well-parametrised model.

Cross-validation
Cross-validation was performed by simulating the parameter sets found by the 
MOSTIPS and classical method against all stimuli used with the respective cell. Here, 
we report the root mean squared error between the recorded and simulated clamp 
current traces. The insets show the logarithm of the error ratio between the 
MOSTIPS fits and their respective classical reference fit; values below zero indicate 
that the MOSTIPS values provide a better overall fit. Mutation scheme, top: graded; 
fitting method, bottom: DE.

The cross-validation error, though well above noise level (estimated at 84 ± 172 nA 
across the recordings used here), is comparable between MOSTIPS and classical fits, 
with MOSTIPS outperforming the classical fit in many cases. The rather large 
absolute error is attributable to two causes: Firstly, we have used single, unfiltered 
recordings without leak subtraction. The leak current drifts over the course of the 
experiment, but since the MOSTIPS fits only have access to a short slice of data, we 
did not adjust the corresponding parameter value between the various recordings 
of each cell. Secondly, despite our best efforts in modelling the single channels used 
here with two components each (and freely adjustable kinetics, top), some model 
mismatch remains.
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