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• Our model reproduces relationships between folding metrics observed in biology.

• Strong local vs. weak global connectivity predicts a transition from ganglia like

structures, through smooth to highly convoluted cortices

• Increasing brain size leads to more gyrification

 The model explains the different scaling behavior of folding with brain size

between different mammalian orders by altering the decay of global connectivity

• Varying connectivity continuously instead of column numbers also alters amount of 

folding. 

• Stereotypic folding patterns follow local variations of connectivity parameters. 

• Model explains pathological changes in the folding pattern including lissencephaly. 
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3. Strong local and weak global connectivity 

predicts a transition in folding patterns
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The model cortex is organized into cortical columns C labeled form one to n.

Each column contains the same number of neurons which are represented

by points, with all points of the same colour belonging to the same Column.

A: Connection probability p with cyclical topological distance between

columns ∆𝐶𝑖𝑗. The spatial reach of the strong local connectivity is set by the

variance σ of a Gaussian function. The weaker global connectivity is limited

by the exponent γ of a cosine function. The relative strengths of the local

and global connectivity are set by b and a, respectively.

We use a variant of a method that we previously applied to predict relative neuronal positions using

ordinal multidimensional scaling (oMDS) (Weigand et al. 2017) to find neuronal arrangements for a given

connectivity. Here we use (t-SNE) (van der Maaten and Hinton 2008) instead of oMDS (Borg and

Groenen 2005) to predict the positions of neurons based on their connection dissimilarities.
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To quantify the morphological features of the modelled folding patterns, we implemented different

measurements, the most important of which is the folding index F. F is the ratio between the exposed

circumference AE and the total circumference AT.
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𝐴𝐸

A: Strong local vs. weak global connectivity requirements show that the ratio between the number of

neurons N and the number of columns C determines the extent of folding. We see a transitions from

ganglia like structures through lissencephalic cortices to highly convoluted ones while the other

connectivity parameters are fixed.

B: Adjusting the connectivity parameters in the right way extreme levels of gyrification can be achieved.
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C: Folding degree in

coronal sections with

folding index of different

primates with increasing

brain size (from left to

right: marmoset, galago,

squirrel monkey,

macaque, and human).

Gyrification in primate

brains increases with

brain size.

C

D

D: Cortical layouts for different Cs, with the number of neurons per column M and the connectivity fixed.

Calculated folding index above each layout; Folding in the model increases with brain size (C corresponds

to brain size in the model) similarly to primates.

E: Quantification of two different properties of

folding patterns for a large range of C (same

parameters as in (D)). The mean folding index

(left) and the frequency spectrum (right) with

amplitudes of different frequency bins indicated

by different colours. Higher frequencies emerge

on top of lower ones.

E

Borg I, Groenen PJF. 2005. Modern multidimensional scaling - theory and applications, NY Springer. Springer Science & Business Media.

Mota B, Herculano-Houzel S. 2015. Cortical folding scales universally with surface area and thickness, not number of neurons. Science. 

349:74–77.

Pillay P, Manger PR. 2007. Order-specific quantitative patterns of cortical gyrification. Eur J Neurosci. 25:2705–2712.

van der Maaten L, Hinton GE. 2008. Visualizing data using t-SNE. J Mach Learn Res. 9:2579–2605. 

Weigand M, Sartori F, Cuntz H. 2017. Universal transition from unstructured to structured neural maps. Proc Natl Acad Sci. 114:E4057–

E4064.

Zilles K, Palomero-Gallagher N, Amunts K. 2013. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36:275–

284.

A: The model reproduces pathological changes of the

cortical folding pattern in humans. This is done by

altering the connectivity parameters in specific sections

of the model cortex similar to the changes we find in

human brains with certain disorders. (middle)

Presumptive normal cortical folding pattern in a healthy

brain. (left) Lowering the strength of global connectivity

a → deeper folds in that segment similar to changes in

the frontal lobe of patients with autism spectrum

disorder. (right) Schizophrenic patients exhibit

increased depth of the superior temporal sulcus and an

increased folding frequency in the superior temporal

gyrus. Decreasing strength of the global connectivity a

and the number of neurons per column M → model

shows a similar change in folding. (top) The smaller

folds more frequent folds in polymicrogyria could be

reproduced by decreasing M and increasing a.

(bottom) Microcephaly can be modelled using a lower

C, M or both.
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B: The degree of folding scales

differentially with brain size between

mammalian orders (Pillay and Manger

2007; Zilles et al. 2013; Mota and

Herculano-Houzel 2015). In our model

changing the range of local

connectivity had no impact on the

scaling of gyrification. Changing the

decay of global connectivity however

had a marked effect.
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1. Abstract

Throughout the animal kingdom, the structure of the central nervous system varies widely from distributed

ganglia in worms to compact brains with varying degrees of folding in mammals. The differences in

structure may indicate a fundamentally different circuit organisation. However, the folded brain most likely is

a direct result of mechanical forces when considering that a larger surface area of cortex packs into the

restricted volume provided by the skull. Here, we introduce a computational model that instead of modelling

mechanical forces relies on dimension reduction methods to place neurons according to specific

connectivity requirements.

• Model uses simplified strong local and weak long-range connectivity.

• Model predicts a transition from separate ganglia through smooth brain structures to heavily folded

brains.

• Our model suggests that mechanical forces that are known to lead to cortical folding may synergistically

contribute to arrangements that reduce wiring.

• We reproduce experimentally determined relationships between metrics of cortical folding.

• Our model provides a unified conceptual understanding of gyrification linking cellular connectivity and

macroscopic structures in large-scale neural network models of the brain.


