Dynamical phase transitions study in simulations of finite neurons network

NeuroMat
Research, Innovation and
Deuromathematics

Introduction \rightarrow The Model

Ferrari et al. [1] introduced a continuoustime interacting-point-processes model for network of spiking neurons with two states: "active" or "quiescent" (1 or 0).
The neuron goes from "active" to "quiescent" either when it spikes, or by the effect of the leakage. The opposite happens whenever a neighbor neurons spikes.

- The spikes are modeled as the events of a Poisson process of parameter 1;
- The leakage events are modeled as the events of a Poisson process of some positive parameter gamma γ.

In [1] it was shown that this model presents phase transition with respect to the parameter γ, that is, exists a parameter γ_{c} such that:

- For all $\gamma>\gamma_{c}$, the system will reach a configuration with all neurons in the quiescent state in finite time with probability 1.
- For all $\gamma<\gamma_{c}$, there is a positive probability that the system will never reach a configuration with all neurons in the 'quiescent' state.

Finite number of neurons

- It is usual to work with a necessarily finite number of neurons when modeling the brain;

AND

-When the number of neurons is finite we know by elementary results about Markov chains that the absorbent state, where all neurons are "quiescent", will necessarily be reached in some finite time for any value of γ.

Conjecture

There exists y_{c} such that if $y<y_{c}$, then we have the following convergence:

$$
\lim _{N \rightarrow \infty} \Gamma\left(\frac{\sigma_{N}}{E\left(\sigma_{N}\right)}\right) \rightarrow \mathrm{e}^{-t}
$$

In words, the re-normalized time of extinction σ_{N} converges in distribution to an exponential random variable of mean 1.

To back up our conjecture we build up the present model in python and run it 10,000 turns for $\mathrm{N}=(10,50,100,500,1000), \mathrm{y}=(4.00,0.85,0.50,0.40$, $0.35,0.30$) and plot the normalized histogram.

Results

Figure 2: Normalized σ_{N} behavior for different values of y for each lattice: The blue, gray and orange bars are histograms of the renormalized time of extinction σ_{N} in the high y (super-critical), intermediate y (due to the finite number of neurons) and low y (sub-critical) simulations respectively for the case Z^{1} and the red line is the exponential $\mathrm{e}^{-\mathrm{t}}$.

Table 1:Average of time of extinguishing in the sub-critical case for a different $2 \mathrm{~N}+1$ number of neurons and

Other Dimension lattices Zd

Super-critical case:

Figure 3: Normalized σ_{N} sub-critical behavior for different values of y for each lattice: a, b and c the blue, green and gray bars are the histogram for high y values (super-critical) simulations also for, respectively, the lattices Z^{1} Z^{2} and Z^{3}

Sub-critical case:

Figure 4: Normalized σ_{N} sub-critical behavior for different values of y for each lattice: In a, b and c the blue, green and gray bars are histograms of the renormalized time of extinction σ_{N} in the low y (sub-critical) simulations for the cases Z^{1}, Z^{2} and Z^{3} respectively and the red line is the exponential $\mathrm{e}^{-\mathrm{t}}$.

References

[1] Ferrari PA, Galves A, Grigorescu I et al. Phase transition for infinite systems of spiking neurons. J Stat Phys (2018) 172:1564-1575 https://doi.org/10.1007/s10955-018-2118-6
[2] Cassandro M, Galves A, Picco P. Dynamical phase transitions in disordered systems: the study of a random walk model. InAnnales de I'IHP Physique théorique 1991 (Vol. 55, No. 2, pp. 689-705).

Acknowledgement

CAPES

