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Abstract

The study of correlations between brain regions in functional magnetic
resonance imaging (fMRI) is an important chapter of the analysis
of large-scale brain spatiotemporal dynamics. In particular, novel methods
suited to extract dynamic changes in mutual correlations are needed.
Here we scrutinize a recently reported metric dubbed
“Multiplication of Temporal Derivatives” (MTD) [1].

We compare it with the sliding window Pearson correlation (SWPC)
of the raw time series in several stationary and non-stationary set-ups,
including: simulated autoregressive models with a step change in their
coupling, surrogates [2] with realistic spectral and covariance properties and
a step change in their cross- and autocovariance, and a realistic stationary
network detection (with the use of gold standard simulated data [3]).

Along the way we discover that cross-correlations are tied to their
autocorrelations for fMRI time series of brain regions. We solve simple
autoregressive models to provide mathematical grounds for that behaviour.

Formulation

The MTD measure of dynamic functional correlations is defined in [1]:

dsit = sit+1 − sit (1)
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, (3)

where 2w + 1 equals to the number of samples considered in a temporal
window [t − w , t + w ], si is an i -th time series, and σ̄i is the standard
deviation of the entire dsi series.

Intuitions: theory and reality
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Fig. 1 Simple examples of raw time series
st (black) and its series of derivatives dst

(red) for a Gaussian (top), a sinusoid
(middle), and a typical brain BOLD
(bottom) time series.

Fig. 2 Each dot represents the
cross-correlation (rij) of two BOLD time series
versus the average autocorrelation value (AC)
of the pair (small filled green circles for raw
BOLD and open squares for derivatives; red big
circles denote binned averages for raw signal
and squares for derivatives).

References

[1] JM Shine, O Koyejo, PT Bell, et al., Estimation of dynamic functional connectivity
using multiplication of temporal derivatives, Neuroimage, 122 (2015) 399-407

[2] T.O. Laumann, A.Z. Snyder, A. Mitra, et al., On the stability of BOLD fMRI
correlations, Cerebr. Cortex, 27 (2017) 4719-4732

[3] S.M. Smith, K.L. Miller, G. Salimi-Khorshidi, et al., Network modelling methods
for FMRI, Neuroimage, 54 (2011) 875-891

[4] JK Ochab, W Tarnowski, MA Nowak, DR Chialvo, On the pros and cons of using
temporal derivatives to assess brain functional connectivity,
NeuroImage, 184 (2019) 577-585.

Autoregressive models: not enough but explain a lot

We can derive and compute analytically Pearson correlation
(and correlation of the derivative) of AR(1) process

x1t = a1x1,t−1 + a2x2t−1 + ξ1t,

x2t = a1x2,t−1 + a2x1t−1 + ξ2t,
(4)

knowing its parameters a1 and a2 (their range is limited by
|a1|+ |a2| < 1), where ξit are uncorrelated. Consequently, we can predict
the average behaviour of SWPC and MTD for a range of parameters within
that model, as well as we can reverse-engineer the real data, designing
a model that exhibits specific Pearson correlations.

Fig. 3 Dependence of cross-correlations rij on parameters of the AR(1) model.
Left: raw signals. Right: derivatives.

Dynamic correlations

Can derivatives enhance detection of an abrupt change in functional
correlations between two regions of interest (ROI) or change of the whole
functional network?

Fig. 4 Simulation of a sudden change (dashed vertical line) in covariance using surrogate
[2] times series. Left: cross-correlation↘ 0.2, autocorrelation≈ 1.
Right: cross-correlation drops↘ 0.2 and autocorrelation↘ 0.4.
Top: correlations. Bottom: time series of two selected ROI.

Conclusions

The formal comparison of MTD with Pearson correlation of the derivatives
reveals only negligible differences. There are no evident mathematical
advantages of the MTD metric over commonly used correlation methods.

Does differentiation help? It depends:
I centering and windowed standardization decrease

uncertainty of correlations
I differences: decrease signal-to-noise ratio
I differences: enhance stationarity, not affected by low frequency drifts
I differences: have lower sensitivity to autocorrelations

(but worse than raw series for high autocorrelations)

The relation between cross- and autocorrelation is relevant
to the occurrence of false positives in real networks, because similar
autocorrelations of any two regions do not necessarily result from their
actual structural connectivity or functional correlation.
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