

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

The Retina Predicts Information in **Inertial Stochastic Dynamics**

Min Yan¹, Yiko Chen², C. K. Chan², K. Y. Michael Wong¹

1 Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 2 Institute of Physics, Academia Sinica, Taipei

Introduction

• Visual stimuli are first received by the retina, but the processing of visual signals begins first at the retina, instead of the visual cortex [1].

• In experiments on the salamander retina, the mutual information between the visual signals and the responses of the retina with various time differences showed that

Neural Network Model

Simulations

We calculated the mutual information between the inputs and the responses (firing rates) of the neural network at different time separations.

HMM (Hidden Markov model)

- responses of the retina actually have correlations with subsequent visual inputs [2].
- Not only can the retina transmit information, but it can also anticipate future signals based on what it has received.
- Experiments on the bullfrog retina showed that visual stimuli generated by Hidden Markov Model (HMM) and Ornstein-Uhlenbeck (OU) process resulted in different behaviors [3].
- To model these predictive behaviors, we propose a neural network model to simulate the dynamics of the amacrine cells and ganglion cells [4].

- Sample: Retina of Bullfrog
- Condition:
- Room temperature
- Ringer's solution

MEA provides recording

of field potentials from

a population of

neurons.

The Mutual Information in HMM (Hidden Markov model)

• MEA:

electrode size 10 µm

- Stimulation:
- Moving Bar
- Video refresh rate: 60 Hz
- 1 pixel ~ 2.8 μ m on retina
- Bar luminance:
- 1.47~3.7 mW/m² with ~100% contrast

Conclusions

- Our model agrees with experiments well (Figs. 1 and 3).
- When the correlation time τ increases, the prediction effect becomes more and more prominent for HMM.
- In HMM, the predictive ability is strongest at the arms of the damped harmonic oscillator, where the dynamics can be predicted from its inertia (momentum) (Fig. 2).
- The inertial behavior in the retina is achieved by the local inhibition of the amacrine cells, as the response is weaker in the tail part of a continuously moving stimulus.

Figure 1. The mutual information (MI) curves for various correlation times τ of HMM. Positive δ_t denotes prediction. (A) The mutual information calculated from simulations. (B) The mutual information measured from experiments. Amplified part of 'predictive MI' in (A) is in the left figure.

The Mutual Information of Single Cells in HMM

Figure 2. Peak positions of the mutual information curves of individual neurons for correlation times (A) τ = 1.07s and (B) τ = 1.28s averaged over 26 moving-bar movies.

• There is no predictive behavior in OU process as it is not inertial.

References

1. Thomas J, Siegelbaum S, Hudspeth AJ: *Principles of Neural Science* Vol. 4, pp. 1227-1246. ER Kandel, JH Schwartz & TM Jessell (eds.) NewYork: McGraw-hill 2000.

2. Palmer SE, Marre O, Berry MJ 2nd, Bialek W: Predictive information in a sensory population. Proc Natl Acad Sci U S A 2015, **112(22):**6908-6913. 3. Chen KS, Chen CC, Chan CK: Characterization of predictive behavior of a retina by mutual information. Front Comput Neurosci 2017, 11: 66. 4. Zhang AJ, Wu SM: Responses and Receptive Fields of Amacrine Cells and Ganglion Cells in the Salamander Retina. Vision Res 2010, 50(6): 614-622.

Acknowledgements

This work is supported by the Research Grants Council of Hong Kong (grant numbers 16322616 and 16306817) and the MOST 105-2112-M-001 -017 -MY3K.

The Mutual Information in OU (Ornstein-Uhlenbeck) Process

Figure 3. The mutual information (MI) curves for various correlation times τ of OU Process. Positive δ_t denotes prediction. (A) The mutual information calculated from simulations. (B) The mutual information measured from experiments. Amplified part of 'predictive MI' in (A) is in the left figure.