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1. Introduction

2. Associative learning model for a 
cortical column

The cortical connectome develops in an experience-dependent manner under
the constraints imposed by the morphologies of axonal and dendritic arbors of
numerous classes of neurons. In this study, we describe a theoretical framework
which makes it possible to construct the connectome of a cortical column by
loading associative memory sequences into its structurally (potentially) connected
network.

To generate the structural connectivity of the column, we put together axonal
and dendritic arbors of 55 neuron classes reconstructed as part of the Blue Brain
project [1,2] and created a network containing 28,156 neurons interconnected
with 1.9×108 potential synapses [3]. By loading associative memory sequences into
this network [4,5], we generated its functional connectivity. Many properties of
connectivity in the model column are in good agreement with the available
experimental measurements. These include connection probabilities for 14 types
of local excitatory and inhibitory projections, the dependence of connection
probability on the distance between neurons, correlations between structural and
functional connectivity, volume densities of inhibitory synapses in different cortical
layers, and overexpression of specific excitatory and inhibitory 3-neuron motifs.
Our results contain predictions regarding intra- and inter-laminar connectivity
between specific neuron classes that can be tested in future experiments.

We conclude that basic properties of connectivity in the cortical column may
have resulted from biologically-constrained associative learning in a
morphologically constrained neural network.

3. Structural statistics of the cortical 
column

4. Number of synapses per connection

6. Bouton densities on axons and inhibitory 
synapse volume densities
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5. Cell-type specific connectivity

8. Two- and three-neuron motifs
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7. Structural and functional connectomes
➢ The cortical column consists of 28,156 excitatory and inhibitory neurons,

belonging to 55 morphologically defined classes of cells in six layers.
➢ Structural connectivity of the column was calculated based on the neuron

positions within the column and the morphologies of their axonal and dendritic
arbors.

➢ A structural (potential) connection between two neurons was defined as an
apposition of their axonal and dendritic branches at less than 2.0 μm for
excitatory-to-excitatory connections and less than 0.7 μm for the remaining
three connection types.

➢ We applied soft thresholds to remove connections with few potential synapses.
A threshold of 2 was used for excitatory-to-excitatory connections and 1 for
other connection types.

➢ The structural column was loaded with associative sequences of network
states, 𝑋1 → 𝑋2 →. . . 𝑋𝑚+1, by training individual neurons (e.g. neuron i) to
independently associate a given network state, vector 𝑋𝜇, with the state at the

following time step, 𝑋𝑖
𝜇+1

.

➢ Several biologically-inspired constraints were imposed on the learning process.
These include sign constraints on excitatory and inhibitory connection weights,
hemostatic l1 norm constraints on presynaptic inputs to each neuron, and noise
robustness constraints. Note that connection weights of structurally
unconnected neurons remain zero throughout learning.

➢ We solved the associative learning problem with the replica method in the limit
of N → ∞ and with convex optimization for finite N.

➢ The values of parameters governing the model were inferred by comparing
experimentally measured structural and dynamical properties of local cortical
networks with the results of the associative learning model [5].

➢ The average number of synapses between potentially connected excitatory 
neurons matches well with experimental data. 

➢ The average number of synapses for E → I, I → E, and I → I connections obtained 
in the model are about 4 times smaller than that reported in experimental studies. 
We think that this may be due to a bias in the identification of synapses based on
light microscopy images.  

➢ Synaptic connection probabilities for 14 projections between different excitatory

and inhibitory neuron classes in the model column are in good agreement with

the experimental data [1].

➢ Distance-dependent synaptic connection probability between L5PCs in the

model also agrees with the experimental measurements [13].

➢ Functional connectivity in the model column is proportional to structural

connectivity [10].

➢ Overexpression of bidirectional synaptic connections increases with the lateral
distance between neurons. Overexpression is negligible for neurons separated
by less than 100 µm.

➢ Experimentally observed overexpression of bidirectional connections between
excitatory neurons may be caused by correlations in associative memory
patterns [4,5].

➢ Overexpressions of excitatory and inhibitory three-neuron motifs observed in

the model are in general agreement with various experimental measurements.

➢ Overexpressions of motifs 3, 4, 10, and 11 were detected in excitatory L5TTPC

subnetworks [13], while overexpressions of motifs 3 and 4 in inhibitory

subnetworks were reported in [14].

➢ Neuron densities in the model column are consistent with the experimental
measurements [1,6].

➢ Dendrite length densities agree with the measurements from two cortical
systems [7,8]. However, the length densities of excitatory neuron axons in the
model are far below the experimental values (~5µm-2) due to the absence of
long-range projections originating from neurons outside the column [9].

➢ Volume densities of potential synapses are much larger than the experimentally
measured densities of synapses, which is indicative of high structural plasticity
potential of cortical networks.

➢ Projections contributing less than 1% of the total synapse numbers were

eliminated to avoid clutter.

➢ Overall, the connectome of the model cortical column exhibits a small world

topology with abundant intra-layer interactions and sparse inter-layer

projections.

➢ Bouton densities in the model are significantly higher than the experimentally
measured values.

➢ Volume densities of inhibitory synapses in the model are generally consistent
with the densities of symmetric synapses measured with electron microscopy
in different cortical layers.

➢ The model connectome shows that L5 excitatory neurons receive inputs from all

layers, including a strong excitatory projection from L2/3. These and many other

features of the model connectome are ubiquitously present in many cortical

areas (see e.g., [11,12]).
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