Shaping connectivity and dynamics of neuronal networks with physical constraints

A.-A. Ludl 1* & J. Soriano 1

1: Dept. de Física de la Materia Condensada
*; ludl@ub.edu

Summary

Simulations of neuronal growth in 2D

We study local network properties in simulations of 2500 neurons growing in a disk of diameter 4 mm. The density of neurons is about 200 neurons/mm^2 which corresponds to that seen in experiments on primary cultures.

Figures on the right represent the average values of in-degree (k_in) and clustering coefficient (CC) in square regions of side 0.63 mm, containing ~80 neurons.

Simulations with 2D scaffolds

The box-like scaffold structure is modeled by a 4x4 array of cross shaped obstacles. Data for simulations of one, two and four scaffolds placed in center of the circle are presented.

In all three cases the in-degree (k_in) is reduced and the clustering coefficient (CC) is enhanced in the vicinity of the obstacles.

Distributions of in-degrees (left) and connection lengths (right).

Model

Network growth

Randomly position neurons on in a defined area. Obstacles are modeled as exclusion areas.

Dendritic trees are modeled as circular areas with radius (r_0) drawn from a normal distribution.

Axons grow at random angles and follow a biased random walk with T=1.1 mm, as in [4].

Neuron dynamics

A quadratic integrate and fire model with adaptation was used for the soma dynamics [4,5].

A generated spike is transmitted as a current and the synapse model includes depression [4].

\[C_v = k(v - v_t)(v - v_r) - u + I + \eta \]

\[\tau_u = b(v - v_r) - u \]

if \(v \geq v_r \), then \(v \rightarrow v_r, u \rightarrow u + d \)

where \(v, v_r, v_t \) are the soma membrane, resting & threshold potentials, \(u \) is an inhibitory current, \(I \) contains synaptic inputs and \(\eta \) is a noise term.

References

Acknowledgements

We thank J. G. Orlandi for helpful discussions and contributions. We thank the Fundació Bosch i Gimpera for financial support. This research is part of MESOBRAIN. MESOBRAIN has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 713140.

Cultures on scaffolds

The structure of the culture substrate allows to guide neurite growth cones and neuronal connectivity pattern in vitro [1,2,3].

We employ 3D printed scaffolds within the Mesobrain project to stabilize fragile cultures and build 3D cultures mimicking cortical columns in vitro [mesobrain.eu]

Left: Bright field image of neurons growing on scaffold. Right: SEM image of two level box shaped scaffolds.

Neurons were grown on tower-like scaffolds.

Activity was measured using Ca-fluorescence and the functional network was inferred with GTE as in [6].

Dynamics on scaffolds: Triangles and Towers

An array (24x24) of triangles disposed in a circle favours connections at small angles.

Electronmicrograph of triangular scaffolds.

Neuron positions and axonal paths in simulations.

Neurons were grown on tower-like scaffolds.

Activity was measured using Ca-fluorescence and the functional network was inferred with GTE as in [6].

Neuron index

Initiation point density

Distributions of lengths versus angles for sim.

Distribution of connection lengths.

Image of neurons growing on scaffold.

Inferred functional network.