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Abstract

Conclusion

Why backprop?1

• widely and successfully used in 
many deep learning applications

• very simple learning rule

Backprop in the brain?2,3,4,5,6

• recently, several papers proposed 
different models of how backprop 
might be implemented in the brain

Cortical circuits implement backprop5,6

• possible by employing dendrites, 
feedback and cortical circuitry

• learning rule itself local and biologically 
plausible / interpretable

Linking biology and deep learning6

• using the Lagrange framework, we have 
a clear link from abstract theory to the 
biophysical implementation

Backprop in the brain?

Advanced response compensates delays

Cortical circuitry implements backprop

No weight coupling: Learning the microcircuit

How adjust deep synapses
to improve final output…?
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The derived neurodynamics can be interpreted 
as pyramidal neurons integrating basal 
(𝑾𝒊𝒓𝒊−𝟏) and apical (𝒆𝒊) input at the soma:

The apical potential encodes a prediction 
error that is calculated locally via lateral 
interneuron circuits that try to explain away 
feedback coming from higher areas. 

Errors are propagated backward through the network via feedback connections while 
sensory information is propagated forward. Neurons minimize these local prediction 
errors 𝒆𝒊, which in turn reduces a global cost function. 

The hierarchical structure of the cortex raises the question how plasticity in the brain 
is able to shape such a structure in the first place. The distant cousins of biological 
neurons, deep abstract neural networks, are commonly trained with the 
backpropagation-of-errors algorithm (backprop), which solves the credit assignment 
problem for deep neural networks and is behind many of the recent achievements of 
deep learning. Despite its effectiveness in abstract neural networks, it remains 
unclear whether backprop might represent a viable implementation of cortical 
plasticity. Here, we present a new theoretical framework that uses a least-action 
principle to derive a biologically plausible implementation of backprop.

Whether the brain might use an optimization  
scheme like backprop to guide synaptic 
plasticity in deep hierarchical cortical areas is 
still an open question.

Theorem 2 (real-time gradient descent)

𝜹𝑳 = 𝟎 & ሶ𝑾 = −𝜼 ⋅ 𝜵𝑾 𝑳

Theorem 1 (real-time backprop)

𝐝

𝐝𝑾𝒊
𝒄𝒐𝒔𝒕 = lim

𝛽→0

1

𝛽
ത𝒆𝒊
𝜷
𝜑𝛽 𝑢𝑖

T

ത𝒆𝒊 = 𝑊𝑖+1
T ത𝒆𝒊+𝟏, ሶ𝑾𝒊 ∝ ത𝒆𝒊𝜑 𝑢𝑖

T

𝑬(𝒖) =

𝑖

𝒖𝒊 −𝑾𝒊𝝋(𝒖𝒊−𝟏)
2 + 𝛽 ⋅ 𝒄𝒐𝒔𝒕

prediction error ത𝒆𝒊

teacher strength

𝒖𝒊
𝑾𝒊𝝋(𝒖𝒊−𝟏)

𝒖 = 𝒖 − 𝝉 ሶ𝒖

𝑳 = 𝑬(𝒖, ሶ𝒖)

Synaptic dynamics are defined to perform gradient descent on the same Lagrangian 𝐿.
The combined neurosynaptic dynamics lead to the emergence of backprop and 
learning as gradient descent on a cost function.

Here, we present a model that derives
network dynamics from a Lagrangian 𝑳.  
Standard leaky integrator dynamics in 𝑢 are 
obtained by requiring a least-action principle of 𝐿
with respect to the future discounted voltage 𝒖.

ത𝒆𝒊

ሶ𝑾𝒊 ∝ 𝒖𝒊 −𝑾𝒊𝝋 𝒖𝒊−𝟏 𝝋
𝑻 𝒖𝒊−𝟏 .

𝝉 ሶ𝒖𝒊 = −𝒖𝒊 +𝑾𝒊𝒓𝒊−𝟏 + 𝒆𝒊 .

These errors nudge the soma, becoming accessible to the plasticity rule driving the 
forward projections 𝑾𝒊, which can be interpreted as a voltage-based version of the 
Urbanczik-Senn rule (dendritic prediction of somatic activity):

𝑢𝑘

-

+

𝒖𝒌+𝟏 𝒕 + 𝝉 ≈ 𝒇(𝝋𝒌 𝒕 )

ҧ𝑒𝑘
low-pass

𝒓𝒌 𝒕 = 𝝋(𝒖𝒌 𝒕 )
𝑢𝑘

-

+

𝒖𝒌+𝟏 𝒕 + 𝝉 ≈ 𝒇(𝝋𝒌 𝒕 + 𝝉 )

ҧ𝑒𝑘
low-pass

𝒓𝒌 𝒕 ≈ 𝝋(𝒖𝒌 𝒕 + 𝝉 )

≈ 𝝋𝒌 𝒕 + 𝝉 𝝋𝒌
′ (𝒕) ሶ𝒖𝒌(𝒕)
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This is demonstrated here for two 
tasks: Learning MNIST continuously 
and learning to reproduce a 
(continuous) human iEEG signal.

Energy function

Lagrange formalism Backprop

Cortex

𝑟𝑖 = 𝜑 𝑢𝑖 + 𝜏 ሶ𝜑(𝑢𝑖)

            

            

    

    

    

 
 
 
 

  
  

  

𝜑 𝑢𝑖

In this model, neurons communicate 
with an advanced (look-ahead) rate 
that takes the time-derivative of the 
membrane potential into account:

Such an advancing mechanism might be implemented by the spiking mechanism, 
e.g., sodium gating of the Hodgkin-Huxley (HH) model. In the apical dendrites, 
similar mechanisms might advance the error signal as well.

The resulting dynamics become 
intuitive when we look at the 
Lagrange (or, more commonly, 
Energy) picture:
Without nudging, the network 
traverses states with 𝐸 = 0. Only if 
we nudge, the network starts moving 
through a regime 𝐸 ≠ 0, while 
plasticity pulls the network back into 
a low energy regime.

energy 𝑬

𝜷 = 𝟎, ሶ𝑾 = 𝟎
→ 𝑬 = 𝟎

𝜷 ≠ 𝟎, ሶ𝑾 = 𝟎
→ 𝑬 ≠ 𝟎

𝜷 ≠ 𝟎, ሶ𝑾 ≠ 𝟎
→ 𝑬 = 𝟎

𝒓𝒊 𝒕 = 𝝋 𝒖𝒊 𝒕 + 𝝉𝝋′ 𝒖𝒊 𝒕 ሶ𝒖𝒊(𝒕)

≈ 𝝋 𝒖𝒊 𝒕 + 𝝉 .
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The microcircuit can be trained to avoid weight coupling. In this case, the 
interneurons are also nudged (either one-to-one or mixed) by the higher cortical 
area. The pyramidal-to-interneuron weights learn to mimic the top-down feedback

while the interneuron-to-pyramidal weights learn to undo the mixing as well as 
compensate for the feedback through 𝐵:

While training the forward weights, the interneuron weights learn to align accordingly.

ሶ𝑾𝒊
𝑰𝑷
∝ 𝒖𝒊

𝑰 −𝑾𝑰𝑷𝝋 𝒖𝒊 𝝋 𝒖𝒊
𝐓 ,

𝑢𝐼

𝑢𝐼

ሶ𝑾𝒊
𝑷𝑰
∝ 𝑩𝒊𝒖𝒊+𝟏 −𝑾

𝑷𝑰𝒖𝒊
𝑰 𝒖𝒊

𝑰 𝐓 .


