Propagating Densities of Spontaneous Activity in Cortical Slices

Román Arango¹, Pedro Mateos-Aparicio², Maria V. Sanchez-Vives^{2,3†} and Emili Balaguer-Ballester^{1†}

(1) Department of Computing and Informatics, Faculty of Science and Technology, Bournemouth University, UK. (2) Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. (3) ICREA, Barcelona, Spain. † Joint last author.

28th Annual Computational Neuroscience Meeting, Barcelona, 16th July 2019

Slow Oscillations (SO) as The Default Activity Pattern of the Cerebral Cortex [1]

Phenomenology

- Multiscale Slow Oscillations (\leq 1Hz): ▷ from the neuronal level, to the whole brain (slow
 - waves), through the local network level.
- Emergent activity under functional disconnection:
 - ▷ NREM sleep, deep anaesthesia or **cortical slices**

Key Dynamical Features

► Relaxation-oscillator behaviour: ▷ Intrinsic fluctuations between two alternating metastable attractors: UP and DOWN states.

Figure 1:Simultaneous LFP (top) and intracellular (bottom) recordings from the auditory cortex of the anaesthetized rat, exhibiting slow oscillations [2]

Advantages of the SO Cortical State

Low Connectivity: resilience to perturbances.

Spatial Clustering of Multi-Unit Activity Densities

Static Densities

Density estimation during long baseline periods (\geq 300 s) offers a static spatial image of the network.

- ► SO's static densities are a mixture of DOWN- and UP-states' densities.
- ▶ Whilst SO are dominated by DOWNs' subdensities, very similar across channels, UPs' exhibit a richer variety, which depends on their cortical location.
- ▶ Differences between groups of electrodes on different layers tend to increase in the AS condition, namely for IG-layer's signals.
- ► Interestingly, UP-densities' variability prefigures AS's.

- Spatio-temporal propagation:
 - ▷ The travelling **UP/DOWN** wavefront reveals properties of the underlying network.
- ► Facilitation of the transition towards more connected. awake-like states (AS).
- ► UP States: Model of circuit attractor implementing computation and acting as a window into conciousness.

 \rightarrow SO is a promising paradigm to study the cortical function and the emergence of conciousness.

Motivation

- Can we detect other network states emerging from the SO regime?
- ► Candidates:
 - ▷ Nested substates within the SO regime (is there only one single type of UP state?)
 - > States which emerge when the UP/DOWN regime ebbs away.

Experimental Model and Cortical Slice Recordings

Extracellular recordings in coronal cortical slices of the ferret's primary visual cortex

From SO to an Awake-Like State (AS) [3]

Pharmacological Modulations

- ▶ addition of Carbachol (0.5 μ M) + Norepinephrine (50 μ M)
- reduction of extracellular Calcium (to 0.8-0.9 mM)

 \rightarrow Experimental model to explore the transitions from the SO state towards an awake-like, largely asynchronous state: emulating the transition from unconciousness to consiousness.

Figure 6:MUA's static densities comparison across electrode groups (by column and layer position). Left: within SO for two states (Down and Up). Right: for two distinct regimes (SO and AS)

Figure 7:Same as fig 6 for a different slice. Inasmuch as the position of the MEA may slightly vary from one preparation to another, so the actual layerrelative location of the electrodes cannot be ascertained a priori.

Densities' Spatial Clustering

Electrode grouping: hierarchical cluster analysis of the MUA densities over a long baseline period.

- Clusters are farer apart in the AS condition than in the SO's.
- AS's clusters tend to be organised longitudinally, according to alleged cortical layers.
- ▶ UP's clusters lie on a deformation path between SO's and AS's.
- \rightarrow The clustering of high-activity states (UPs and AS) seems to reflect the laminar structure of the slice. \rightarrow UP-states activity anticipates the awake-like state.

Figure 2: Nissl-stained ferret's V1 cortical slice depicting cor-	Figure 3:16-channel
tical layers and the location of the multi-electrode array. Elec-	flexible multi-electrode
trodes will ideally lie on different layers (supra- and infra-	array used for the
ganular), across different cortical columns [4].	recordings [5].

LFP and MUA

Extracellular Recordings are usually decomposed into Local Field Potentials (LFP) and Multi-Unit Activity (MUA):

- ► LFP results from afferent neuronal activity (e.g., from the summation of EPSP), as captured by the low-frequency band (<200Hz) of the extracellular recordings.
- Only units in the vicinity of the electrode contribute to the MUA (i.e., efferent activity), represented in the high frequencies of the recording.

Estimating the MUA

- Theoretical motivation: high-frequency spectral components of the population firing rate are asymptotically proportional to the individual firing rates of the neurons involved [6].
- \rightarrow The MUA may be estimated as the relative power change of the high frequencies (200-1500 Hz) of the extracellular recordings [7].

Figure 8: Hierarchical clustering of static densities' similarity. Comparison for individual slices under different regimes (top: SO (overall), middle: SO (Up), bottom: AS). Groups of similar static densities are outlined.

Figure 9:Same as *fig 8* for a different slice. **Right:** Dendrograms exhibiting clusters distances. Left: Schematic projection of the dedrograms onto MEA. Letters refer to nodes of electrodes in the MEA.

A Glimpse on the Spatio-Temporal Propagation of MUA Densities

Unified analysis of the MUA's spatio-temporal evolution under different dynamical regimes: in absence of wave-front (AS) and poorly stationary signals (SO).

SO: a whimsical propagating wave

Measuring the Evolution of Locally Estimated Densities

Neuronal Network State MUA's Probability Density. \equiv (Working Definition for Network State)

 \rightarrow When estimated from different electrode groups, with varying time baselines, densities reflect different spatial and temporal scales.

(1)

- Kolmogorov-Smirnov time-series (KSts). For a set of channels $C = \{c_1, \ldots, c_p\}$, consider f_T^C , the estimated probability density of the values taken by the signals $X_t^{c_i}, 1 \leq i \leq p$, altogether, over a period T of length h.
- Temporal evolution of these densities to be measured by their relative change against a static density $f_{T_0}^C$, estimated over a baseline period T_0 .
- ▶ The time-series K_{τ}^{C} is defined in a suitable sub-sampling set, as the KS statistic between the evolving and the static densities.

$$K^{\mathcal{C}}_{\tau} := d_{\mathcal{KS}}(f^{\mathcal{C}}_{\mathcal{T}_0}, f^{\mathcal{C}}_{\mathcal{T}_{\tau}}),$$

where T_{τ} is an interval of length *h*, containing τ . \rightarrow Acts as a spatio-temporal filter that is distribution-free.

Figure 5: Example of KS-timeseries computation for 3 channels from the same node during SO. **Top:** log(MUA) signals of distinct channels superposed (green hues); values taken during the sample period (blue dots) Middle: estimated densities (blue) superposed to the baseline static density (red). Bottom: KS-timeseries.

Figure 10:Merged cross-correlograms of KSts during SO, at two different epochs Figure 11:Merged cross-correlograms of KSts during AS for the same slice as fig from the same slice as (figs 6&8). Colours represent target nodes **D**, **E** and **F**. 10, for two sets of target nodes for the same epoch

- ▶ All the nodes exhibit sustained SO, but not all do engage equally in the UP-front propagation, nor in the same order (*fig 10*).
- ▶ A general regime of asynchrony prevails during the AS, were not for the occurrence of some UP-like bursts of activity (*fig 11*).
- Columnar connectivity (from infra- to supra-granular) seems still favoured in AS.
- Some evidences of slower long-range connectivity of integrated activity during the AS.

References

[1] Sanchez-Vives MV, et al. (2017) Neuron 94(5):993-1001. [2] Sanchez-Vives MV, et al. (2014) Arch Ital Biol. 152(2-3):147-55. [3] D'Andola M, et al. (2017) Cereb Cortex, 112:105-113. [4] Capone C, et al. (2017) Cereb Cortex, 28:1-17.

[5] Illa X, et al. (2015) In: SPIE Microtechnologies, Int Soc Opt and Phot, p. 951803. [6] Mattia M, et al. (2002) Phys Rev E, 66 051917. [7] Reig R, et al. (2010) J Neurophysiol 103: 1253–1261

http://dec.bournemouth.ac.uk/staff/ebb/

http://www.sanchez-vives.org/

rcabrera@bournemouth.ac.uk