
Propagating Densities of Spontaneous Activity
in Cortical Slices

Román Arango1, Pedro Mateos-Aparicio2, Maria V. Sanchez-Vives2,3† and Emili Balaguer-Ballester1†

(1) Department of Computing and Informatics, Faculty of Science and Technology, Bournemouth University, UK.
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Slow Oscillations (SO) as The Default Activity Pattern of the Cerebral Cortex [1]

Phenomenology

I Multiscale Slow Oscillations (≤1Hz):
. from the neuronal level, to the whole brain (slow

waves), through the local network level.

I Emergent activity under functional
disconnection:
. NREM sleep, deep anaesthesia or cortical slices

Key Dynamical Features

I Relaxation-oscillator behaviour:
. Intrinsic fluctuations between two alternating

metastable attractors: UP and DOWN states.

I Spatio-temporal propagation:
. The travelling UP/DOWN wavefront reveals

properties of the underlying network.

Figure 1:Simultaneous LFP (top) and intracellular (bottom) recordings from the

auditory cortex of the anaesthetized rat, exhibiting slow oscillations [2]

.

Advantages of the SO Cortical State

I Low Connectivity: resilience to perturbances.

I Facilitation of the transition towards more connected,
awake-like states (AS).

I UP States: Model of circuit attractor implementing
computation and acting as a window into
conciousness.

→ SO is a promising paradigm to study the cortical function and the emergence of conciousness.

Motivation

I Can we detect other network states emerging from the SO regime?

I Candidates:
. Nested substates within the SO regime (is there only one single type of UP state?)
. States which emerge when the UP/DOWN regime ebbs away.

Experimental Model and Cortical Slice Recordings

Extracellular recordings in coronal cortical slices of the ferret’s primary visual cortex

From SO to an Awake-Like
State (AS) [3]

Pharmacological Modulations

I addition of Carbachol (0.5 µM) +
Norepinephrine (50 µM)

I reduction of extracellular Calcium
(to 0.8-0.9 mM)

→ Experimental model to explore
the transitions from the SO state
towards an awake-like, largely
asynchronous state: emulating
the transition from
unconciousness to consiousness.

Figure 2:Nissl-stained ferret’s V1 cortical slice depicting cor-

tical layers and the location of the multi-electrode array. Elec-

trodes will ideally lie on different layers (supra- and infra-

ganular), across different cortical columns [4].

Figure 3:16-channel

flexible multi-electrode

array used for the

recordings [5].

LFP and MUA

Extracellular Recordings are usually decomposed into Local Field
Potentials (LFP) and Multi-Unit Activity (MUA):

I LFP results from afferent neuronal activity (e.g., from the
summation of EPSP), as captured by the low-frequency
band (<200Hz) of the extracellular recordings.

I Only units in the vicinity of the electrode contribute to the
MUA (i.e., efferent activity), represented in the high
frequencies of the recording.

Estimating the MUA

Theoretical motivation: high-frequency spectral
components of the population firing rate are asymptotically
proportional to the individual firing rates of the neurons
involved [6].

→ The MUA may be estimated as the relative power
change of the high frequencies (200-1500 Hz) of the
extracellular recordings [7].

Figure 4:Signals obtained from a sample extracellular recording of an infra-granular electrode in the same cortical slice. Left: during the SO regime. Right:

during the Awake-Like (AS). Note the change of magnitude order over the MUA signals.

Measuring the Evolution of Locally Estimated Densities

Neuronal Network State ≡ MUA’s Probability Density.
(Working Definition for Network State)

→ When estimated from different electrode groups, with varying time baselines, densities reflect different spatial
and temporal scales.

Kolmogorov-Smirnov time-series (KSts). For a set of

channels C = {c1, . . . , cp}, consider f CT , the estimated

probability density of the values taken by the signals

X ci
t , 1 ≤ i ≤ p, altogether, over a period T of length h.

I Temporal evolution of these densities to be measured by
their relative change against a static density f CT0

, estimated
over a baseline period T0.

I The time-series KC
τ is defined in a suitable sub-sampling

set, as the KS statistic between the evolving and the static
densities.

KC
τ := dKS(f CT0

, f CTτ ), (1)

where Tτ is an interval of length h, containing τ .

→ Acts as a spatio-temporal filter that is distribution-free.

Figure 5:Example of KS-timeseries computation for 3 channels from the same node

during SO. Top: log(MUA) signals of distinct channels superposed (green hues);

values taken during the sample period (blue dots) Middle: estimated densities

(blue) superposed to the baseline static density (red). Bottom: KS-timeseries.

Spatial Clustering of Multi-Unit Activity Densities

Static Densities

Density estimation during long baseline periods (≥ 300 s) offers a static spatial image of the network.

I SO’s static densities are a mixture of DOWN- and UP-states’ densities.

I Whilst SO are dominated by DOWNs’ subdensities, very similar across channels, UPs’ exhibit a richer variety, which depends on
their cortical location.

I Differences between groups of electrodes on different layers tend to increase in the AS condition, namely for IG-layer’s signals.

I Interestingly, UP-densities’ variability prefigures AS’s.

Figure 6:MUA’s static densities comparison across electrode groups (by column

and layer position). Left: within SO for two states (Down and Up). Right: for

two distinct regimes (SO and AS)

Figure 7:Same as fig 6 for a different slice. Inasmuch as the position of the

MEA may slightly vary from one preparation to another, so the actual layer-

relative location of the electrodes cannot be ascertained a priori.

Densities’ Spatial Clustering

Electrode grouping: hierarchical cluster analysis of the MUA densities over a long baseline period.

I Clusters are farer apart in the AS condition than in the SO’s.

I AS’s clusters tend to be organised longitudinally, according to alleged cortical layers.

I UP’s clusters lie on a deformation path between SO’s and AS’s.

→ The clustering of high-activity states (UPs and AS) seems to reflect the laminar structure of the slice.

→ UP-states activity anticipates the awake-like state.

Figure 8:Hierarchical clustering of static densities’ similarity. Comparison for

individual slices under different regimes (top: SO (overall), middle: SO (Up),

bottom: AS). Groups of similar static densities are outlined.

Figure 9:Same as fig 8 for a different slice. Right: Dendrograms exhibiting

clusters distances. Left: Schematic projection of the dedrograms onto MEA.

Letters refer to nodes of electrodes in the MEA.

A Glimpse on the Spatio-Temporal Propagation of MUA Densities

Unified analysis of the MUA’s spatio-temporal evolution under different dynamical regimes: in absence of wave-front (AS) and
poorly stationary signals (SO).

SO: a whimsical propagating wave AS: ephemeral coordinated activity arises amid asynchrony

Figure 10:Merged cross-correlograms of KSts during SO, at two different epochs

from the same slice as (figs 6&8 ). Colours represent target nodes D, E and F.

Figure 11:Merged cross-correlograms of KSts during AS for the same slice as fig

10, for two sets of target nodes for the same epoch.

.I All the nodes exhibit sustained SO, but not all do engage equally in the UP-front propagation, nor in the same order (fig 10 ).

I A general regime of asynchrony prevails during the AS, were not for the occurrence of some UP-like bursts of activity (fig 11 ).

I Columnar connectivity (from infra- to supra-granular) seems still favoured in AS.

I Some evidences of slower long-range connectivity of integrated activity during the AS.
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