Wave propagation, dynamical richness and predictability under different brain states

Alessandra Camassa1, Miguel Dasilva1, Maurizio Mattia2, Maria V. Sanchez-Vives1,3

1IDIBAPS (Institut d’Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; 2Istituto Superiore di Sanità (ISS), Rome, Italy; 3ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain.

Contact email: camassa@clinic.cat

INTRODUCTION

Propagating waves of cortical activity are dynamical patterns that occur across different brain states and are also present in unconscious states [1]. In this study we aimed to describe different brain states characterizing the changes occurring to the spatiotemporal dynamics of slow-wave activity in multichannel data. During the sleep-like slow oscillations (SOs, < 1Hz), activation waves propagate across the cortical network both in vitro [2] and in vivo in anesthetized animals [3]. By varying the anesthesia levels, it is possible to vary the brain state [4]. Here, we varied the anesthesia levels without departing from the slow-wave activity (SWA) regime. The emergent oscillatory activity ranged from lower (0.12 Hz) to higher (1.15 Hz) frequency for high to low anesthesia levels respectively. The repertoire of cortical spatiotemporal patterns of activity under different brain states, or under different levels of network excitability, provide us a good framework to study the network dynamics and its variation due to physiological and pathological conditions.

METHODS

• Experimental setup: extracellular local field potentials (LFPs) recorded with a 128ch multielectrode array (MEA) placed on the surface of the brain of mice (n=5) anesthetized at three different levels.

• Wave propagation: given x(t) the multiunit activity (MUA) at channel i computed as in [3], its analytic expression is obtained through the Hilbert transform and used to compute the instantaneous phase at each electrode.

• Predictability: we identified 4 main spatiotemporal patterns of propagation using a k-means algorithm. The same centroids were used for all the subjects in each experimental condition to group similar waves and a thin-plate spline interpolation was used to reconstruct the mean Phase Activation onsets.

RESULTS

• Dynamical richness: Principal Component Analysis (PCA) of the TimeLagMatrices under each anesthesia level.

• The Shannon Entropy of the probability distribution of the waves projected into the PC1-PC2 plane was computed to estimate the dynamical richness of each anesthesia level as:

$$S = - \sum P_i \log_2 P_i$$

• We computed the sequence of occurrence of the 4 patterns for each subject in each anesthesia level and quantified the sequence predictability using the Entropy rate for the corresponding pattern probabilities as:

$$E = - \sum p_i p_j \log_2 p_j$$

CONCLUSIONS

1) Using anesthesia it is possible to modulate cortical dynamics within the SWA regime.
2) The wave propagation patterns and their sequence change together with the brain state.
3) The dynamical richness and the unpredictability of cortical activity increase when we move from deeply unconscious states towards wakefulness.

Funded by the Spanish Ministry of Science (BFU2017-85048-R) and by EU H2020 Research and Innovation Programme, Grant 720270 (HBP SGA2)