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INTRODUCTION

Propagating waves of cortical activity are dynamical patterns that occur across different brain  Here, we varied the anesthesia levels without departing from the slow-wave activity (SWA)
states and are also present in unconscious states [1]. In this study we aimed to describe differ-  regime. The emergent oscillatory activity ranged from lower (0.12 Hz) to higher (1.15 Hz) fre-
ent brain states characterizing the changes occurring to the spatiotemporal dynamics of  quency for high to low anesthesia levels respectively. The repertoire of cortical spatiotemporal
slow-wave activity in multichannel data. During the sleep-like slow oscillations (SOs, < 1Hz), ac-  patterns of activity under different brain states, or under different levels of network excitability,
tivation waves propagate across the cortical network both in vitro [2] and in vivo in anesthe-  provide us a good framework to study the network dynamics and its variation due to physiolog-
tized animals [3]. By varying the anesthesia levels, it is possible to vary the brain state [4]. ical and pathological conditions.

(0" METHODS

- Experimental setup: extracellular local field potentials (LFPs) recorded with a 32ch « Wave propagation: given x(t) the multiunit activity (MUA) at channel i computed as in [3],
multielectrode array (MEA) placed on the surface of the brain of mice (n=5) anesthetized its analytic expression is obtained through the Hilbert transform and used to compute the
at three different levels. instantaneous phase at each electrode.
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Waves in each channel were detected as time points related to a given phase crossing [5] and
the collections expressed as TimeLagMatrices of relative phase latencies between local
activation onsets
. Dynamical richness: Principal Component Analysis (PCA) of the TimeLagMatrices  Predictability: we identified 4 main spatiotemporal patterns of propagation using a k-means
under each anesthesia level. algorithm. The same centroids were used for all the subjects in each experimental condition to

group similar waves and a thin-plate spline interpolation was used to reconstruct the mean Phase

T|meLagMatr|x latency map of each cluster.
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« The Shannon Entropy of the probability * « We computed the sequence of g "
distribution of the waves projected into o occurrence of the 4 patterns for each |
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CONCLUSIONS
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1) Using anesthesia it is possible to modulate cortical dynamics within the SWA regime.
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