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OUTLINE

I We present a computational procedure both to obtain a
heuristic neuron model and to estimate input parameters
from single voltage traces.

I The procedure is based on an efficient use of artificial neural
networks (ANN) built on wavelets (wavenet). More precisely,
a modification of wavenets aiming at decreasing the number
of functions used[1].

I We identify (obtain a black-box synthetic equivalent model)
by means of the wavenet.

I By computing the inverse wavenet, we are able to provide
input estimations from voltages traces and further distinguish
between excitatory and inhibitory input conductances.

I We test our procedure with the Morris-Lecar model as a
proof-of-concept instantiated by conductance-based neuron
models, but it has potential applications to experimental data.

MODEL

We consider the Morris-Lecar model:

C
dv
dt

= −gL (v − EL)− gK w (v − EK )− gCa m∞(v) (v − ECa) + I,

dw
dt

= φ
w∞(v)− w
τw(v)

,

(1)
EL = −60, EK = −84, ECa = 120 (mV )

V1 = −1.2, V2 = 18, V3 = 12, V4 = 17.4 (mV )

gL = 2, gK = 8.0, gCa = 4.0 (mS/cm2).

(2)

Ultimate goal: estimating the input I = Iapp + Isyn from the
voltage traces.

Bifurcation diagram of system (1-2) in terms of I =: Iapp.

FUNCTION APPROXIMATION USING WAVELETS THEORY

Wavelets form a family of functions, constructed from
expansions and translations of a basic function Ψ(.) called
wavelet mother (here, a quadratic spline).

Ψ(a,b)(t) = |a|−1/2Ψ

(
t − b

a

)
.

A standard particular choice (discrete wavelets family) is:

Ψ(m,n)(t) = |a0|−m/2Ψ (am
0 t − nb0) ; m,n ∈ Z .

They can represent any function f (t) ∈ L2(R):

f (t) =
∑
m

∑
n

cm,nΨm.n

Series expansion is generally divided into 2 parts:
non-refined information identified by an expansion in scaling
functions Φ0,n (quadratic spline) and details identified by
wavelets Ψm,n. The complete signal is the sum of both parts:

f (t) =
n=∞∑

n=−∞
dnΦ0,n (t) +

m=∞∑
m=0

n=∞∑
n=−∞

cm,nΨm,n (t)

Modified wavenet

The proposed modification combines localized and global
scaling functions unlike classical Wavenets, which only use
localized wavelets and scale functions.

Network structure

Network has a single output, y(k + 1), the predicted variable
at time (k + 1). and two inputs: the perturbation variable
(exogenous) u(k) and the current output y(k) (see figure).
The weights of input layer are taken as 1.

Dynamical systems identification

The identification of a dynamical system consists of:
1. Acquisition of data groups for fitting (training patterns): data

obtained by solving the system of differential equations.
2. Determination of the best network structure: Studying what

set of input variables better identifies the process. Simple
criterion: the smaller number of variables giving the smallest
quadratic error.

3. Simulation: Acquisition of a new data group (test), relating
inputs to outputs, different from that used in training. The
network performance is evaluated in relation to test data
group (crossed validation).

4. Validation through dynamic prediction. In this case, the first
point of the validation data group (initial condition) is used as
an input to the network. In relation to the other points, only
the information of perturbation variable is used, as external
information, and a feedback of the output variables is made.

IDENTIFICATION OF THE ML MODEL

Inputs (5): Iapp(t), v(t − h), w(t − h), v(t − 2h), w(t − 2h).
Network: 1 level of activation functions; ρ = 1e − 7
(ρ = regularization parameter, composed by the quadratic error of the output and the

weights of the network squared to penalize the excessive curvatura of the surface).
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Injected current trace, Iapp(t) (50 levels uniformly distributed,
sample frequency 20 000 Hz).

Outputs (2): v(t), w(t).
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In red, simulation
from the ML
model; in black,
the output from
the wavenet
network.

Voltage trace v(t) (above) and phase portrait on v − w plane
(below).

Notice the excellent match of the wavenet simulation
compared to the simulation of the system of differential

equations.

INVERSE WAVENET: INPUT ESTIMATION

I We perform the inverse prediction, using an inverse wavenet
that provides currents from voltages. Using the original
Iapp(t) current as the target, we train the inverse network.

I We use the voltage trace to obtain Iestim(t), the estimated
input current, from the inverse wavenet.

I Technical issue: to avoid oscillations in suprathreshold
estimations, a mask was generated to separate subthreshold
from suprathreshold.

I To verify the quality of the current estimation, the estimated
current Iestim is then used as the input of the direct network.

In blue, the
original v -output;
in red, the masked
output vmask .

Voltage processed with mask (in black).

The estimated
input current
Iestim(t) is shown in
green; in ochre,
the original I(t).

Estimated currents using the inverse neural network.

Verification of the quality of the current estimation. The
estimated current Iestim is used as the input of the direct

network, obtaining the traces of the voltage v(t) and the gating
variable w(t), in red. In blue, the voltage v and gating variable

w obtained by using a trained network with original input.

CONCLUSIONS

1. Identification: From an appropriately designed input and the
corresponding voltage trace, we obtain a black-box model
the ANN identifies the neuron’s behaviour with high accuracy.
Interestingly, the interval of input currents used to train the
wavenet includes both quiescent and spiking regimes, thus
tracking also abrupt changes in the bifurcation diagram.

2. Estimation: We also show how the wavenet methodology
can also be applied to the reverse situation, that is, to provide
input estimations from voltage traces (inverse wavenets).
Estimating the synaptic input (synaptic conductances) is the
ultimate goal, an active research problem line with no
complete solutions yet, see for instance [2].

3. Similar results obtained for more realistic conductance-based
models (not shown here). Tailored training allows to generalize
the method to the presence of multiple timescales.

4. The method is extendable to experimental data. These
findings open new avenues to provide heuristic models for
real neurons by stimulating them in closed-loop experiments
using, for instance, dynamic-clamp. Unfortunately, we lose
any biophysical meaning of the model.
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