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Large-scale synchronization of cortical 

oscillations on the human connectome
James C. Pang, Leonardo L. Gollo, & James A. Roberts

QIMR Berghofer Medical Research Institute, Australia

Noise can counterintuitively synchronize dynamics on 

the human connectome, driven by the brain’s hierarchy 

of activity timescales and heterogeneous connectivity

OBJECTIVES
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Ø Develop a computational model to study how the 
brain’s structure–function coupling leads to patterns 
of large-scale cortical synchronization

Ø Investigate stochastic synchronization on the human 
connectome and tease out its driving mechanisms

CORTICAL SYNCHRONIZATION
Ø Mechanism for communication of functionally 

specific brain regions from mutual interactions 
between local oscillatory units

Ø Excess or deficit results in pathologies (e.g., 
epilepsy, Parkinson’s disease)

METHODS
Ø Each brain region has a local oscillatory phase with 

dynamics governed by the Kuramoto model 

RESULTS: SYNCHRONIZATION PATTERNS

RESULTS: MECHANISMS

Figure 5: Synchronization for different coupling strengths.

Figure 6: (Left) Global coherence for three noise regimes. 
(Right) Percent change of synchronization [global and 

locally within networks partitioned according to 
connectivity strength].

STRUCTURE–FUNCTION
Ø How does the unique structure of the human 

connectome shape neural dynamics (function)?

Figure 1: Example of how 
the brain’s structure–

function coupling leads to 
global brain waves 

(Roberts et al. 2019).  

STOCHASTIC EFFECTS
Ø Studies have found a 

counterintuitive effect, 
called stochastic 
resonance, where global 
perturbations can improve 
system performance
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Figure 2:
Stochastic 
resonance.
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Figure 3: Hierarchy of timescales 
(Cocchi et al. 2016).
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Figure 4: Healthy connectome 
(Roberts et al. 2016).
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RESULTS: STOCHASTIC SYNCHRONIZATION
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1.  Role of hierarchy of timescales

2.  Role of connectome’s heterogeneity
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Figure 7: Synchronization for other distributions of frequency.

Figure 8: Synchronization for other connectivities. 

3.  Amalgamation of phase 
clusters

Figure 9: Cluster formations for three noise regimes.
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