
Motivation

Model

The mammalian visual system has been 
the focus of countless experimental and 
theoretical studies designed to elucidate 
principles of sensory coding. To our 
knowledge, few computational studies 
have attempted to mechanistically 
investigate how the computational 
properties of a network change as a 
healthy organism ages. 

We show that a spiking network model 
trained on visual inputs can 
qualitatively replicate experimentally 
observed features of aging by a simple 
change to its learning rules.

In this work we use E-I Net [1], a spiking 
network model of primary visual cortex 
that has been shown to reproduce the 
visual response properties seen 
experimentally and modify it to reflect 
biological changes observed in animal 
studies of senescence. 

Network model: activity of the neurons is modeled using a 
leaky integrate-and-fire model:

where ui(t) is the membrane potential of the neuron at time t, δt is 
the time step, 𝛕 is the membrane time constant, θi is the firing 
threshold of neuron i, Qik is the input weight from pixel k to neuron i, 
Xk(t) is the kth pixel value at time t, Wij is the synaptic weight from 
neuron j to neuron i, I is a constant current input, and yi is the spike 
train of neuron i.

The input weights, synaptic weights, and firing thresholds 
evolve according to these learning rules that promote 
image reconstruction, uncorrelated firing, and sparse 
firing with target rate p, respectively. Here, ni are the total 
spikes in response to an image.

We age the network by allowing the excitatory target 
spike rate p to increase linearly with continuous training.  
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Results

Physiological changes

Input connections, lateral connections, and firing thresholds all change with age. Far left: Input weights of a 
particular neuron organized into a receptive field (RF) in youth (top) and old age (bottom). Histograms: Input weights & 
lateral weights weaken in magnitude with age, while firing thresholds become more broadly distributed.

Performance changes

Firing selectivity to oriented gratings decreases with age, in 
qualitative agreement with experimental data from [5]

Methods to identify which physiological changes have greatest effect on selectivity

Young (30 loops) Old (80 loops)

123/400 26/400

Gabor in age Not Gabor in age

Gabor in youth 6/123 117/123

Not Gabor in 
youth

20/277 257/277

The fraction of neurons with Gabor-like 
receptive fields drastically drops in age

Neurons with Gabor-like RFs

Swap young parameters with old Freeze parameters 
during aging

Mix & match young/old RF 
magnitudes & structure 

Methods 
We train the model on black and white video of natural 
scenes [2]. To mimic the role of the retina and lateral 
geniculate nucleus in preprocessing visual input, we first 
whiten the frames before feeding them to the network 
[1]. 

We train the network for 30 loops at the baseline 
excitatory target spike rate of p = 0.01 expected spikes 
per image presentation to obtain our mature “young” 
network. To “age” this network, we then increase p by 
0.02 every subsequent loop, culminating in the “old” 
network after 80 total loops. 

To test orientation and direction selectivity, independent 
of training, we present whitened grating stimuli of 
various directions of motion to the networks. The 
orientation index (OI) for each neuron is calculated from 
the response (nj(Фk)) to each of the gratings (angles Фk 
= 0, π/4, …,  3π/4) [4]:

  

We can decouple the effects of the changing RF 
structure and magnitude on network selectivity 
by examining, independent of the training 
procedure, the selectivity after remapping the 
young input weights onto a later distribution of 
input weight magnitudes, for the networks after 
30, 35, 40...80 loops:

where Φyoung(·) and Φold(·) are the cumulative 
distribution functions for the young and old input 
weight distributions and Qre are the remapped 
input weights. 

We quantify how Gabor-like RFs are by the fitting  
procedure performed in [7], except that we use a 
less strict rejection condition (0.8 vs. 0.5).

Conclusions
● Dysregulation of neuron firing may be a cause of age-induced 

changes in brain physiology and performance.

● Deterioration of input strength & structure is the primary cause of 
performance deficits in our model.

● Computational modeling holds promise as an approach to forming 
a mechanistic understanding of aging.

Acknowledgments & References

[1] King, Zylberberg, & DeWeese, J. Neurosci. 33, 5475 (2013)
[2] Betsch, Einhäuser, Körding, & König, Biol. Cyber. 90, 41 (2004)
[3] Hua, Kao, Sun, Li, & Zhou, Brain Res. Bull. 75, 119 (2008)
[4] Mazurek, Kager, & Van Hooser, Front. Neur. Circ. 8, 92 (2014)
[5] Hua et. al., Neurobiol. Aging 27, 155 (2006)
[6] Silverstein, Demmin, & Bednar, Comp. Psych. 1, 102 (2017)
[7] Zylberberg, Murphy, & DeWeese, PLoS CB 7(10): e1002250 (2011)

We thank Paul King, Arianna Maffei, 
Lorna Role, and Joel Zylberberg for 
helpful discussions. ST would like to 
thank Jim and Marilyn Simons and the 
Simons Foundation at Stony Brook 
University for the Simons Summer 
Research Program that supported this 
work. BAWB would like to thank Stony 
Brook University for financial support. 

Correspondence: sethtal@stanford.edu & braden.brinkman@stonybrook.edu


