
Information transfer in modular spiking networks

Barna Zajzon1,2, Abigail Morrison1,3, Renato Duarte1

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6),
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Introduction

To interact with the external environment in real-time, cortical microcircuits must em-

ploy efficient and reliable mechanisms for passing information between different modules and for

integrating input from multiple sources . Here we investigate, from a functional perspective , how structural

features influence these mechanisms in the context of stimulus representation, integration and transfer in

modular spiking networks.

Hypothesis: biophysically-based architectural features (modularity and topography) impose critical func-

tional constraints on the reliability of information transmission, aggregation and processing.

Focus: random connectivity and biologically-inspired topographic maps . Such maps, comprising ordered

projections among distinct neuronal populations, are an important and well-studied anatomical feature. How-

ever, their computational significance remains relatively unexplored.

Objectives

• compare dynamics and performance of random and topographic networks

• evaluate how structural parameters of topographic projections influence the systems’ computational prop-

erties (e.g., modularity, map size and degree of overlap)

• investigate the ability of the modular circuit to extract, integrate and propagate information from two

concurrent input streams in a nonlinear fashion

Methods
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•Modules are balanced random networks (10000 leaky integrate-and-fire neurons)

• In networks with topographic maps, each stimulus is propagated through a specific pathway

• Structured stimuli drive specific, randomly selected sub-populations in M0

•Treat local microcircuits as state-dependent processing reservoirs (Reservoir Computing) [2]

• Simple linear (classification of stimulus identity) and nonlinear (XOR) computational tasks

Impact of topographic map structure
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For structured feed-forward projections,

define the topographic modularity m as

m = 1−
p0

pc
∈ [0, 1].

p0: inter-cluster connection probability

pc: intra-cluster connection probability

where cluster refers to the corresponding

stimulus-specific sub-populations.

• Global population statistics converges towards a stable asynchronous irregular regime

•Networks exhibit denoising properties

•Overall discrimination capability improves with hierarchical depth

Topographic precision might be important for the control and modulation of population responses towards

computationally advantageous regimes.

Map size and overlap

Topographic specificity in cortical networks is assumed to decrease with hierarchical depth [3]
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•
Increasing the map sizes linearly

decreases discrimination performance

• This occurs even when there is no overlap

• For other tasks / computations mixing representa-

tions might be beneficial and necessary

The map sizes are controlled by the scaling factor

ρ

ρi = ρ0 + iδ, i = 1, ...

where ρ0 = 0.1 is fixed and δ is the step size.

Sequential transmission of
stimulus representations
The results in this section were published in [1].
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How is the stimulus transferred? 

What if we remove projections

between M
0
 → M

1
from 

input neurons?

Does performance improve with 

if we increase the input intensity?

Classification of 10 stimuli

Can we increase capacity through 

denser topographic maps?
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Structured projections are strictly necessary for information to propagate to sufficient depths.

• Random connectivity can be enough for local transmission

•Topography→ ⋆ asynchronous firing profile

⋆ increased efficiency

⋆ less variable responses

⋆more compact representations

⋆ denser maps increase capacity

Integrating multiple input streams
The results in this section were published in [1].
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Computing locally, within a module, and transmitting the outcome of such computation (local integration)

is more effective than transmitting partial information and computing downstream.

•Topographic networks and local integration increase representational precision
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