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Introduction

Gamma band oscillations recorded in vivo appear usually as dis-
crete events of synchrony called gamma bursts. The overall pro-
cess is a random signal closer to a filtered noise than a coherent
oscillation [1]. Despite its randomness, it has been showed than
such bursty gamma oscillations are good candidates for inter-areal
brain communication [2]. The communication function implied syn-
chronization between connected bursty gamma oscillatory brain ar-
eas. Here we investigated phase synchronization and information
transfer between identical connected networks of PING type. More
specifically we derived envelope-phase equations of the two iden-
tical networks. The phases dynamics derived analytically allow to
show the parameters responsible for synchronization. We found
that noise and propagation delay between the networks induce Out-
of-phase locking( bi-stability in the correlation function between the
phase dynamics of the coupled networks),whereas zero propaga-
tion delay always leads to In-phase locking. We computed delayed
mutual information between phase dynamics of the two connected
networks and showed that the type of phase locking (In-phase or
Out-of-phase) was in agreement with the structure of mutual infor-
mation, clearly the presence of propagation delay was able to allow
for two distinct routes of communication similar to what has been
showed in other study [2].

Synchronization in gamma bursty networks
Networks of excitatory (E1: blue) and (E2: red) neurons with
two-state dynamics (active and quiescent) show oscillations in the
gamma band (30-90 Hz) due to stochastically recurring epochs of
high synchrony, i.e. Gamma bursts.

Figure 1: Top: Rasters, Bottom: Activities.Coupled networks show epochs of synchro-
nized activities during gamma bursts. Only excitatory neurons are shown.

From Poisson process analysis, Ei and Ii (i=1,2) activities are given
by nonlinear stochastic equations (stochastic Wilson-Cowan equa-
tions) [3]:

dEi(t)

dt
= −αEEi(t)+(1−Ei(t))βEf (sEi(t))+

√
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sEi(t) = WEEEi(t)−WEIIi(t) + hiE + LijEEEj(t− τ )

sIi(t) = WIEEi(t)−WIIIi(t) + hiI + LijIEEj(t− τ )

The deterministic analogue in the thermodynamic limit admit a
fixed point with damped oscillations, therefore the system above
admits a quasi-cycle attractor.

Envelope and phase equations for Ei and Ii
We are interested in the fluctuations from the baseline activities
(LNA)[3]: V iE(t) =

√
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(
Ei(t) − E0

)
; V iI (t) =

√
NI
(
Ii(t) − I0

)
Where E0 and I0 are the deterministic fixed point activities.

Stochastic Averaging Method [3] leads to an envelope-phase rep-
resentation in terms of key parameters(D,ω,Ω, CEE,CIE,λ,α,δ, τ )
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M1(x) =
1

sin(δ)

[
CEEsin(x + ωτ + δ)− CIEsin(x + ωτ − δ)

]
M2(x) =

1

sin(δ)

[
CEEcos(x + ωτ + δ)− CIEcos(x + ωτ − δ)

]

Then

V 1
E(t) = Z1(t) cos(ωt + φ1(t)); V 1

I (t) = αZ1(t) cos(ωt + φ1(t) + δ)

V 2
E(t) = Z2(t) cos(ωt + φ2(t)); V 2

I (t) = αZ2(t) cos(ωt + φ2(t) + δ)

•Gamma Envelope-phase dynamics for the coupled networks ob-
tained from the LNA and SAM show epochs of phase-locking.

Figure 2: Envelopes,phases and LFPs time series for the E1 (blue) and E2 (red) popu-
lations. (Top) Envelopes time-series. (Middle) Phases time series. (Bottom) LFPs time
series corresponding to the envelopes (top) and phases (middle) time series

Phase synchronization: inter-areal delay induces Out-of-phase locking

• Phase difference dynamics without delay (τ = 0ms)

dψ(t) = −
[
CEE + CIE

]
sin
[
ψ(t)

]
dt +

√
D
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dW1(t)

f (ψ) = −
[
CEE + CIE

]
sin
[
ψ(t)

]
; ψ(t) = φ1(t)− φ2(t)

The only deterministic stable solutions are (ψ = 2kπ, k =
0, 1, 2, ...):In-phase locking only.

Figure 3: The coupled networks with zero propagation delay always exhibit In-phase
locking.Left: Correlation function between the phase dynamics. vertical black bars correspond
to t = −T/2, 0, T/2 where T is the period of the oscillation. The solid and dashed red lines
represent respectively the cases where the phases are obtained via the Hilbert transform per-
formed on former nonlinear dynamics and from the SAM. Right: Stability analysis of the phase
difference dynamics. The phase difference dynamics admits a single stable fixed point at zero
observed on both stochastic and deterministic functions. The deterministic function is obtained
analytically after some approximations. For the stochastic function, we computed at each time
step a stochastic function F (x) = M1(x)Z2(t−τ)Z1(t)

− M2(x)Z1(t−τ)Z2(t)
, we therefore fitted F (x) with a

polynomial function to obtain f (x).

• Phase difference dynamics with delay (τ 6= 0ms)
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f (ψ) =
1

sin(δ)

[
CIEsin(ωτ − δ)− CEEsin(ωτ + δ)

]
sin(ψ); θ(t) = φ1(t) + φ2(t)

The only deterministic stable solutions depending on the values
of ω,τ , CIE,CEE are (ψ = kπ, k = 0, 1, 2, 3...):In and Anti-phase
locking only.

Figure 4: Propagation delay and noise cooperate to induce Out-of-phase locking differ-
ent to Anti-phase locking. Left: We observe two symmetric peaks in the correlation function,
the positions of the peaks are different to −T/2 and T/2 and suggest an Out-of-phase locking
between the two populations.Right:The stability functions show an unstable fixed point at zero
for both the stochastic and deterministic functions, however the positions of the two stable fixed
points are ψ∗ = −π, π for the deterministic case and ψ∗ = −β, β with |β| < π for the stochastic
case.

• Bifurcation diagram: Out-of-phase locking

Figure 5: Bifurcation diagram showing the positions of the peaks of the correlation
function as the propagation delay τ varies. We observe a clear bifurcation from an In-
phase locking to an Out-of-phase locking (bistability in the correlation function) at a critical
value of the inter-areal propagation delay. We have fixed the noise intensities at weak values
(NE = 800000, NI = 200000). We recall that the deterministic case always leads to In-phase or
Anti-phase locking (it can be seen through the function f (x)).

Information transfer through delayed mutual information

•We quantify information transfer through delayed Mutual informa-
tion analysis.

MI(τ )xy =
∑

P (y(t), x(t− τ ))log2

(
P (y(t), x(t− τ ))

P (y(t), P (x(t− τ ))

)

• τ = 0ms:No directionality for Information transfer

Figure 6: Delayed Mutual information for coupled networks with no inter-areal propaga-
tion delay.The phase delayed Mutual information shows a single peak at τ = 0ms. This suggests
that there is not preferred direction for information flow. The information is transferred similarly
from one network to the other and such transfer is maximal at τ = 0ms (In-phase locking).

• τ 6= 0ms:Directionality for Information transfer

Figure 7: Delayed Mutual Information with inter-areal propagation delay shows a direc-
tionality and therefore the possibility for a flexible inter-areal communication. The phases
delayed mutual information curves show two symmetric peaks positions different from zero.The
two peaks correspond respectively to the situations where one of the networks is the leader while
the other is the laggard and vice-versa. This suggests two routes for information transfer. The
exact value of the delay conduction is set to τ = 4.1ms.

Conclusion

We have derived the envelope-phase dynamics of a coupled bursty
oscillatory networks in the gamma band. Our decomposition allows
to relate phase synchronization on gamma bursts. In fact, phase
synchronization is a transient process which happens more effi-
ciently during bursts of the processes. In addition we have showed
that inter-areal propagation delay and noise cooperate to induce
out of phase locking which is crucial for bidirectional communica-
tion. Our study suggests that bursty oscillations which are ubiqui-
tously observed in vivo are good candidate for flexible brain com-
munication. Future studies will have the ambition to extend our
study to more than two networks with heterogeneities.
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