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INTRODUCTION
The current trend in computational neuroscience is to incorporate multiple physical levels 
of the brain into mathematical models. Such comprehensive models with accurate system 
dynamics are necessary in order to increase understanding of different mechanisms in the 
brain. Mathematical analysis of these models is intractable, hence numerical methods are 
needed. However, their numerical simulation is very resource intensive.

We show that numerical simulation can be made significantly more efficient by employing 
mathematical Model Order Reduction (MOR).  We use Proper Orthogonal Decomposition 
with Discrete Empirical Interpolation Method (POD-DEIM) [2]. Here we apply POD-DEIM to 
a mean-field model, in which cells are grouped together into populations based on their 
statistical similarities, in order to represent the dynamics of the system in terms of the 
mean ensemble behaviour. These populations can be described by a probability density 
function expressing the distribution of neuronal states at a given time. In this study we look 
at a McKean-Vlasov type equation that is derived from the FitzHugh-Nagumo (FN) neuronal 
network model as in [1]. This model uses the Fokker-Planck formalism, which results in a 
large system of coupled nonlinear partial differential equations (PDEs). 
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METHODS
To reduce the dimensions of the model we applied the Proper Orthogonal Decomposition 
with Discrete Empirical Interpolation Method (POD-DEIM), a subspace projection method 
for reducing the dimensionality of general nonlinear systems [2]. We write the n-
dimensional differential equation system in state space format

𝑥′ = 𝐴𝑥 + 𝑓 𝑥, 𝑡 + 𝐵𝑢(𝑡)

POD and DEIM find matrices 𝑉𝑘 , 𝑈𝑗 , 𝑃𝑗, where 𝑘, 𝑗 ≪ 𝑛, that project the system to a small 

dimensional subspace. Here k is the POD dimension and j is the DEIM dimension. The 
reduced system is then

𝑥′𝑘 = 𝑉𝑘
∗𝐴𝑉𝑘𝑥𝑘 + 𝑉𝑘

∗𝑈𝑗(𝑃𝑗
𝑇𝑈𝑗)

−1𝑃𝑗
𝑇𝑓 𝑉𝑘 , 𝑥𝑘 , 𝑡 + 𝑉𝑘

∗𝐵𝑢(𝑡)

and with small dimensions simulating this system is computationally cheaper compared to 
the full system. At any time, the original variables can be restored with

𝑥 = 𝑉𝑘𝑥𝑘

thus no variables are eliminated in the model reduction process. 

DISCUSSION
As the need for multi-scale models of the brain is ever increasing, the ability to reduce the 
computational cost of these models is paramount. Mean-field models allow us to represent 
a population of neural cells in terms of their mean average, which in itself results in lower 
simulation times. Regardless, Fokker-Planck equations are computationally demanding to 
solve. 

Nonlinearity of the model is a major challenge for solving and reducing models in 
neuroscience. As is evident from our results, the computation time of the present mean-
field model can be further cut down by the implementation of the POD-DEIM method that 
is applicable to nonlinear systems.

We plan to implement the same approach to a number of different mean-field models in 
future projects to validate that these models are reliably reducible with mathematical MOR 
methods. Furthermore, employing reduced models in neural simulation software should be 
studied in order to encourage the adaptation of MOR for computational neuroscience.

We discretize the model on a 30x30x30 grid using a fourth-order central difference scheme resulting in a system of 27 000 
dimensions. Integrals are evaluated with Newton-Cotes method of order 6. The mean-field model is simulated for 2 
seconds of biological time by a second order Runge-Kutta method with the initial states from the Gaussian distribution. 

The reduced model recreates the original simulation correctly with very little error using less than 10 dimensions, while 
being over a thousand times faster to simulate. Reduction error increases rapidly as the dimension of the reduced model 
is lowered. A corresponding dimension-dependent gain in simulation speed is observed. These results show that 
mathematically reduced mean-field models are a highly potential approach towards modeling whole-brain dynamics.
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Gain in simulation speed as simulation time of the original model divided by the simulation time of the reduced
model and reduction error as absolute difference at every discretization point summed. X-axis indicates POD 
dimension, while color shows DEIM dimension.

State of reduced models at t=2.0s. Dimension increases to the right, which improves the approximation. Error is the absolute difference at each discretization point. 
POD dimension equals DEIM dimension in this illustration.

Initial marginal probability density calculated by integrating over synaptic conductance
Y. V is membrane voltage and W is a recovery variable in the FN model.  

Marginal Probability density after simulating for 2.0 seconds.

The mean-field model is a McKean-Vlasov-Fokker-Planck equation [1] determined by the equation
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