Plasticity rules for learning sequential inputs under energetic constraints
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1. Objective and Summary

Information measures are often used to obtain the efficiacy of neural networks, and
learning rules can be derived as optimization procedures of some information mea-
sure [4]. On the other side, it is bounded by amount of avaliable resources [5]. Here
we study learning rules balancing information inference and spent energy.We first
consider time local inputs and then develop a generalization for time sequences of
inputs. We:

e set goal function equal to the mutual information between external input and net-
work’s output

e derive learning rules as a gradient descent optimizing this function
e add term proportional to spent energy to the goal function
e take synaptic noise and resulting unreliability of incoming signals into account

2. Resulis

e derived learning rule consists of in time and space local terms and a nonlocal value
common for all neurons

e also sequences can be learned
e more often cases occupy lower energy orbits
¢ t00 Inessential items are dropped off if noise taken into account

5. Interpretation of learning rules

e Sliding threshold for learning ~ BCM rules [7]

e More often x’s occupy lower energy levels (analog to Huffman’s coding [6]): Aw ~
Inp(ylz) — Inp(y) — vE.
e Coding of coming x can rely on previous y’s

— For stable repeating sequences first spiking neuron inhibits further redundant
spikes

e Global term (B) can be mediated by chemical communication [8]
e y|t] not influenced by particular y; ; do not contribute to d,w;;: learning is causal

¢ Notions for external input are distinguished not only by time local input pattern, but
also by following future

o |[f feedback from y to x added, learning supports neurons mostly influencing future
x. It induces exploratory behavior.
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3. Model&Methods

e networks of Hawkes neurons with reset after spiking

e considered dynamics is Oyu; = [Wz-jyj + Vx| — %uz ply=1) = f(u)

U = Wijsg + Vigsy with s7 = fo z(t — 7)h(7)dT with stepwise h for inputs without
time dependencies and h = 7! exp(—t/7) for inputs developing in time

e mutual information:

M =3, p) )., pylz) nplylz) — >, > plx)p(ylz) n{3_ plz)p(y|z)}
e energy term: F = Z Ui FCpsp Z(Wijyj + Vi)
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e minimization of /' = M —~E,,—vc,s, E)psp INStead of just M provides additional terms
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to learning rule: 0, E = | De0y, p(ylt]) | > yrdt + cpepp(y; = 1)

4. Learning as optimization procedure

e Learning rule for 9w (w = {V, W}): optimize M as a gradient descent d,w = —\9,, I

e For in time disjoint inputs:

e Using Inp(y|z) = > Inp;; with p; = f(w;) fory; = 1 and p; = 1 — f(w;) for y; = 0:
O, M =3, > p(e){p(yle)/pier;(2ys — 1) f () * (I p(y|z) — np(y) — YEg) — Ypsp)

® sz’j — €L [f/(uz)/pz@yz — 1) * {hlpz',t — lnp(y) — fYESp} — prSp]
(approximating p(y) with help of neurons activity covariances)

¢ For time sequences of inputs:
e Using Inp(y[t]|x|t]) = D> Inpgy:
Ou, M = 32, 52, p@)pyle) {32,240 — Vs f/ (i) /pie} * {3 npry — nply) — vE} —
Vosp 2_ Y] (With Inp(y) ~ 3 Inp(yi|y,—1.4,, ) for every pair of {z|t}, y[t]} of length T'.
e Summing over many overlapping pairs : dw;; = A;jB — y,s,r; With
= [ Alt — 7)Ay(r)dr, A(r) = |7|/TOT — |7]), Aij = 2yt — Vs,
B =Inpi; — lnp(yt‘yt—l..tspi) — Ly .
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6. Noisy inputs

e For inputs z; = x; + & with Gau55|an noise & with variance o;., p(y; = 1|z) =
G(Ij,01) = \/%a[ff I+ &) exp(—3 )df with o7 = 3", Viio,,

o0y M = p.{x;0:G; + 0%]01280(}@-}{ In 1%@- In f%zwl)} with a new term cause of

Vo2 . .
dv,01, = =2 keeping o7 and V's away from big value

~ p(i,y){&, 220

e With z, not z: in the leading order of 7,,.: Oy, M
with the noise-induced term ~Vj;o /07 .

e This term prevents learning rare inputs not distinguishable from noise. So, |y|; is
strongest for moderate p(x), rare, but still clear recognizable.
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7. Outlook: further planned studies

e explicit separation of neurons in excitatory and inhibitory and sparseness effects

e oscillations as self-organized way of saving energy by population coding (similar to
[2]), especially by storing information for unknown time

e subpopulations coding more abstract notions being energetically to expencive to
code in connections between neurons coding lower abstraction level

e relation of self-organized criticallity, inference vs energy and excitaiton vs inhibition
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