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1. Objective and Summary
Information measures are often used to obtain the efficiacy of neural networks, and
learning rules can be derived as optimization procedures of some information mea-
sure [4]. On the other side, it is bounded by amount of avaliable resources [5]. Here
we study learning rules balancing information inference and spent energy.We first
consider time local inputs and then develop a generalization for time sequences of
inputs. We:
• set goal function equal to the mutual information between external input and net-

work’s output
• derive learning rules as a gradient descent optimizing this function
• add term proportional to spent energy to the goal function
• take synaptic noise and resulting unreliability of incoming signals into account

2. Results

• derived learning rule consists of in time and space local terms and a nonlocal value
common for all neurons
• also sequences can be learned
•more often cases occupy lower energy orbits
• too inessential items are dropped off if noise taken into account

3. Model&Methods

• networks of Hawkes neurons with reset after spiking
• considered dynamics is ∂tui = [Wijyj + Vikxk]− 1

τui, p(y = 1) = f (u)

• ui = Wijs
y
j + Viks

x
k with szl =

∫ t−tspi

0 zl(t − τ )h(τ )dτ with stepwise h for inputs without
time dependencies and h = τ−1 exp(−t/τ ) for inputs developing in time
•mutual information:
M =

∑
x p(x)

∑
y p(y|x) ln p(y|x)−

∑
y

∑
p(x)p(y|x) ln{

∑
p(x)p(y|x)}

• energy term: E =
∑
k

yk︸ ︷︷ ︸
Esp

+cpsp
∑
i,j,k

(Wijyj + Vikxk)︸ ︷︷ ︸
Epsp

•minimization of F = M−γEsp−γcpsp︸︷︷︸
γpsp

Epsp instead of just M provides additional terms

to learning rule: ∂wijE =
∫
Dε∂wijp(y[t])

∫ ∑
k ykdt + cpspp(yj = 1)

4. Learning as optimization procedure

• Learning rule for ∂tw (w = {V,W}): optimizeM as a gradient descent ∂tw = −λ∂wijF
•For in time disjoint inputs:
•Using ln p(y|x) =

∑
ln pi,t with pi = f (ui) for yi = 1 and pi = 1 − f (ui) for yi = 0:

∂wijM =
∑

x

∑
y p(x){p(y|x)/pi|xxj(2yi − 1)f /(ui) ∗ (ln p(y|x)− ln p(y)− γEsp)− γpsp}

•∆wij = xj[f
/(ui)/pi(2yi − 1) ∗ {ln pi,t − ln p(y)− γEsp} − γpsp]

(approximating p(y) with help of neurons activity covariances)
•For time sequences of inputs:
•Using ln p(y[t]|x[t]) =

∑
ln pk,t :

∂wijM =
∑

x

∑
y p(x)p(y|x)[{

∑
t(2yi,t − 1)s

yj
i,tf

/(ui)/pi,t} ∗ {
∑

ln pk,t − ln p(y) − γEt} −
γpsp

∑
yj,t] (with ln p(y) ∼

∑
ln p(yt|yt−1..tspi

) for every pair of {x[t], y[t]} of length T .

•Summing over many overlapping pairs : δwij = ÃijB − γpsprj with
Ãij =

∫
∆(t− τ )Aij(τ )dτ , ∆(τ ) = |τ |/Tθ(T − |τ |), Aij = (2yi,t − 1)s

yj
i,tf

/(ui,t)/pi,t,
B = ln pi,t − ln p(yt|yt−1..tspi

)− γEt .

5. Interpretation of learning rules

•Sliding threshold for learning ~ BCM rules [7]
•More often x’s occupy lower energy levels (analog to Huffman’s coding [6]): ∆w ∼

ln p(y|x)− ln p(y)− γE.
•Coding of coming x can rely on previous y’s

– For stable repeating sequences first spiking neuron inhibits further redundant
spikes

•Global term (B) can be mediated by chemical communication [8]
• y[t] not influenced by particular yi,t do not contribute to ∂twij: learning is causal
•Notions for external input are distinguished not only by time local input pattern, but

also by following future
• If feedback from y to x added, learning supports neurons mostly influencing future
x. It induces exploratory behavior.

6. Noisy inputs

•For inputs x̃i = xi + ξi with Gaussian noise ξi with variance σ2
nz, p(yi = 1|x) =

G(Ii, σ
2
Ii
) = 1√

2πσI

∫
f (I + ξ) exp(− ξ2

2σ2I
)dξ with σ2

Ii
=
∑

i V
2
ijσ

2
nz

• ∂VijM =
∑
px{xj∂IGi + ∂VijσIi∂σGi}

{
ln Gi

1−Gi
− ln p(yi=1)

1−p(yi=1)

}
with a new term cause of

∂VijσIi =
Vijσ

2
j

σI
keeping σ2

I and V ′s away from big value

•With x̃, not x: in the leading order of σnz: ∂VijM ∼ p(x̃, y){x̃j∂I p̃(yi|x̃)
p̃(yi|x̃) − Vijσ

2
j/σ

2
I} ln p̃(y|x̃)

p(y)

with the noise-induced term ~Vijσ2
j/σ

2
I .

•This term prevents learning rare inputs not distinguishable from noise. So, |y|1 is
strongest for moderate p(x), rare, but still clear recognizable.

7. Outlook: further planned studies

• explicit separation of neurons in excitatory and inhibitory and sparseness effects
• oscillations as self-organized way of saving energy by population coding (similar to

[2]), especially by storing information for unknown time
• subpopulations coding more abstract notions being energetically to expencive to

code in connections between neurons coding lower abstraction level
• relation of self-organized criticallity, inference vs energy and excitaiton vs inhibition
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