PROBING THE ASSOCIATION BETWEEN AXONAL SPROUTING AND SEIZURE ACTIVITY USING A COUPLED NEURAL MASS MODEL

J. Soriano, University of the Philippines – Diliman, Philippines T. Kubo, K. Ikeda, Nara Institute of Science and Technology, Japan

Computational Approach to Seizure Modeling

Generally believed mechanisms of seizure activity initiation

- i. altered excitation-inhibition balance
 - Increased excitation (Wendling 2000)
 - Impaired dendritic inhibition (Wendling 2002)

Neural mass model

Weighted PSPs

ing response function

Goal of the study

To construct a physiologically-consistent generative model for seizure activity initiation, propagation, and termination

stituto

ii. synaptic reorganization of neuronal networks

• Axon sprouting is a mechanism (Cavazos 1991)

Co-occurrence of axonal sprouting and seizure activity has been established in epilepsy and lesion models (Cavazos 1991, Sutula 2002, McKinney 1997)

- i. sprouted axons made predominantly excitatory
 - connections (Buckmaster 2002, Jin 2006)

ii. aberrant synaptic contacts were exhibited similar to those observed with LTP (Leite 2005)

Coupled neural mass model

Model Feature	Existing models		
	Jansen and Rit (1995)	Goodfellow et al. (2012)	Proposed model
Original context	Visual evoked potential	Seizure initiation	Seizure initiation
Propagation mechanism	Synaptic delay with longer latency	Pyramidal cell connections	Sprouted axons with longer latency
Dimensionality of coupling equation	Inconsistent	Consistent	Consistent
Interpretability of coupling parameter	Not physiological	Physiologically plausible	Density of sprouted axons

RESULTS

Activity maps with respect to model parameters

Model reproduces different seizure activities at different coupling strength values (density of spouted axons) $(g_{d}=0.33g_{PV}, G_{d}=1.5G_{PV}, G_{SIN}=50)$

REFERENCES

Buckmaster PS, Zhang GF, Yamawaki R. Journal of Neuroscience. 2002 Aug 1;22(15):6650-8. Cavazos JE, Golarai G, Sutula TP. Journal of Neuroscience. 1991 Sep 1;11(9):2795-803. Goodfellow M, Schindler K, Baier G. NeuroImage. 2012 Feb 1;59(3):2644-60. Jansen BH, Rit VG. Biological cybernetics. 1995 Sep 1;73(4):357-66. Jin X, Prince DA, Huguenard JR. Journal of Neuroscience. 2006 May 3;26(18):4891-900. Leite JP, Neder L, Arisi GM, Carlotti CG, Assirati JA, Moreira JE. Epilepsia. 2005 Jul 1;46(s5):134-41. Mckinney RA, Debanne D, Gahwiler BH, Thompson SM. Nature medicine. 1997 Sep 1;3(9):990-6. Sutula T. Epilepsy currents. 2002 May 1;2(3):86-91.

Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Eur. J. of Neuroscience. 2002 May 1;15(9):1499-508. Wendling F, Bellanger JJ, Bartolomei F, Chauvel P. Biological cybernetics. 2000 Sep 1;83(4):367-78. BY NC SA ACKNOWLEDGEMENT: This presentation is supported by the Department of Science and Technology of the Philippines under the Engineering Research and Development for Technology Project.