geppetto

Building interactive neuroscience applications in Python using Geppetto

Matteo Cantarelli*?, Adrian Quintana', Facundo RodrigueZz!, Filippo Ledda!, Boris Marin’>, Matt Earnshaw?>, Padraig

Gleeson®, Robert Court? R. Angus Silver®, Salvador Dura-Bernal®, William W. Lytton®, Giovanni Idilit?

1 MetaCell Ltd. LLC, Oxford, UK/Boston, USA 2 OpenWorm Foundation, Delaware, USA 3 EyeSeeTea Ltd., London, UK 4 Institute for Adaptive and Neural Computation, University of Edinburgh, UK

> Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK® State University of New York Downstate Medical Center, Brooklyn, NY, USA 7 Universidade
Federal do ABC, Sao Bernardo do Campo, SP, Brazil

Geppetto [1] iIs an open-source platform for building web applications for visualizing

neuroscience models and data, as well as managing simulations. Geppetto underpins a
number of neuroscience applications available to the research community, including
Open Source Brain (OSB) [2], Virtual Fly Brain (VFB)[3], NetPyNE-UIl [4] and a new web
user interface for the Human Neocortical Neurosolver [9].

While Geppetto was originally created with a JavaScript based frontend for user
Interactions on a browser and a Java based backend hosted on a server we have now
extended it to also use a Python based backend. This means that applications built
with Geppetto now also offer their users the ability to interact directly with any
underlying Python APIls, while seamlessly keeping the user interface synchronised.
Python Geppetto applications can be deployed locally, installed using standard Python
packages (accessible from PyPl) or Docker, or they can be deployed remotely on the

web using Kubernetes and JupyterHub.

DEFINE YOUR NETWORK

Populations
Define here the populations of your network

"0

4 Python

PYR

HH

Number of cells

from netpyne ui.tests.tut3 import netParams, simConfig

netpyne geppetto.netParams=netParams
netpyne geppetto.simConfig=simConfig

netParams.popParams

Out[17]: {S: {'cellType': 'PYR', 'numCells': 20,

netParams.popParams['M']['numCells

Figure 1. NetPyNE-UIl [4] as an example of an application built with Python Geppetto. In the screenshot the number of cells for
population M was programmatically changed via an integrated Jupyter notebook (bottom tabbed panel), causing the Graphical

User Interface (GUI, top) to automatically update.

Run Simulation

Dipole x

Dipole Plot

Dipole (nAM x 3000)
o 3

&
o

'cellModel':

'HH'},

AO L A~ [T
ale e ¥ !
s

— Experimen
— L2Pyr
— L5Pyr
— Aggregate

Geppetto Java Architecture Geppetto Python Notebook Architecture

Geppetto Java Virgo Server JupyterHub

--

oo

spawns

--

2ig gERECTe et REUan) Geppetto Jupyter Extension / Python Kernel
NEURON pyGeppetto NEURON
NetPyNE Geppetto Model Interpreter
CREATE NETWORK
— © - Geppetto Model Geppetto Model
General Spatial Distribution Cell List

v

Geppetto application Geppetto application

-
\

Every connection gets its own server and its own Python
Kernel.

\

Every connection goes to the same server which creates
different sessions.

oo

--

Figure 4. Comparison of the Geppetto Java architecture and the Geppetto Jupyter Python one. In Java a Tomcat server hosts all the backend
bundles and accepts connections from multiple clients. In Python JupyterHub is responsible for spawning (e.g. creating a new Kubernetes
pod) a new Python Kernel from a Geppetto application Docker file. Each client will have dedicated resources and direct access to the
memory of the Kernel. In both scenarios a Geppetto Model is exchanged between the server and the client. Additionally, the application code
is mostly independent of the architecture, which makes migrating an application from one stack to the other a fairly easy task.

M {'cellTypes ', 'numCells': 20, 'cellModel': 'HH'}}

User interface Synchronization

We developed a series of JavaScript-Python Connectors that let developers easily build a user
interface, whose state can be controlled from a Python model and vice versa. These

Set Parameters

T T T T T T T T T
0 50 100
Time (ms)

3D x Rate PSD x Spike Histogram x

s
H"\‘M)

‘ ,A i
i
l |

N
i
| 9 i I
]

A
< 2 >
v

&)
L » G 8O
Q

1
150

f O O : : :
e — . connectors are Higher-Order React components (https://reactjs.org/) capable of extending any
o __cell a0, Pop Lyr " standard React control (e.g. TextBox, CheckBox, Dropdown, etc.) to link the underlying value of
: \ the control to a Python model of choice. Once these components will connect to the Python
s Kernel any changes made on the user interface (e.g. ticking a checkbox) will automatically
i affect the connected Python variable synchronising the value from the Ul. In the same way any
e TR [J i ,/—fJ, = programmatic changes made to the variable using the embedded Jupyter Notebook will
Time (ms) automatically be reflected on the connected component.
- O Raster x -
cells=280 syns/cell=765.2 rate=10.3 Hz $ Ll O
0 -, o M— T
3 ‘: - “ ¢ " ® L2Basket S . h tp th)
. . b 4l Sigd Build your interface with D?Ctl)fly w a'd ka on Any change from the Ul will update the
o h P | N T variable you'd like to specified variable in the Kernel. Every
B 100 : ~ synchronize with the programmmatic change inside the
2] °? Components .
3 : | & component Kernel will update the UL.
3 150 1 o ol |° . &
SR D S O S
S % SRV N ..-.?- o+ G tto Pyth connect i
et oz e e eppetto Python
250] A ;' g ?'.-'..'.,.‘. Seppetto L O Controllable |« sync | Python Kernel
- Eb h T RSN Component =
S I N Y S Y Capability .
0 20 40 60 80 100 120 140 160 d|SCOnneCt_>
Time (ms)

Figure 2. HNN-UI [5] as an example of an application built with Python Geppetto. The simulation was executed in Python

using NetPyNE. The analysis plots are generated also in Python while the 3D canvas is reusing the JavaScript Geppetto
component. Geppetto makes it possible to seamlessly combine the different visualizations.

NWB-Explorer

General Details Sweep_0 x

Resolution —— nwhbfilg.acquisition.Sweep_0.data

Timestamps_unit

Seconds 0 0.2 0.4 0.6

Interval Time (s)

1
Sweep_11 x

—— nwbfile.acquisition.Sweep_11.data

PiL.ploL(UwplllE.SLLULUS| Dweep 1 3.1 . L
plt.ylabel("Clamp Current (pA)")
plt.xlabel("time (seconds)")

plt.show()

20 i |
R (11 '
g | |

-20 i | |

-40

(mV)

Membrane P

-60

Figure 3. NWB Explorer as an example of an application currently being developed using Python Geppetto. The Neurodata
Without Borders (NWB) [6] file is loaded using PyNWB and it is represented in memory via a Geppetto model which enables

Sweep_14 x
40

20

0

-20

Figure 5. Component diagram behind Geppetto Python user interface synchronisation. A React higher-order component (middle) extends a
Geppetto Ul component. The controllable capability adds to the component the ability to connect, disconnect and be in sync with a specified
Python variable.

-0 Sweep_1 x

Neuroscience applications built with Python Geppetto have the advantage of bridging the
. beginner/advanced user usability gap. Beginners will be able to interact with a user interface
i that will simplify the accessibility of the underlying APls. Expert users will be able, from the
same GUI, to programmatically interact with the underlying data models and Python APIs while

0.2

Sweep_15 x

eSLalups| ()], UwWDlLlilE.SLlluuLus owee DL

the user interface will be kept updated graphically reflecting any programmatic changes. Three
neuroscience applications are already being built using Python Geppetto: NetPyNE-Ul (Figure
1), Human Neocortical Neurosolver Ul (Figure 2) and NWB Explorer (Figure 3). All three
applications use jupyterGeppetto, a Jupyter Notebook extension we developed to enable fully
custom web applications to run inside a notebook environment.

-60

0.4 0.6 . 0 0.2 0.4 0.6 0.8 1 (] 0.2 0.4 0.6

Time (s) Time (s) Time (s)

S =

-0 Sweep 10 x Sweep_26 x

40
—— nwobfile.acquisition.Sweep_10.data

Applications built using jupyterGeppetto have, on top also of all the advantages of a standard

Geppetto application, a ready to use set of components (e.g. 3D Canvas, Control Panel, etc.), a

predefined Meta-model capable of representing arbitrary neuroscience data and models which
| are instantiated at runtime and a backend capable of running asynchronous simulations using
external simulators (e.g. NEURON), connecting to external data sources (e.g. Neo4j) and persist
user data. For more information about Geppetto please refer to the 2018 publication in
Philosophical Transactions of the Royal Society B, available at http://paper.geppetto.org.

reusing all Geppetto components to represent the data within the files. The NWB file that was loaded by the graphical
interface is also accessible programmatically through an integrated Jupyter notebook allowing advanced users to perform

arbitrary analysis.

References

1. Cantarelli M et al. "Geppetto: a reusable modular open platform for exploring neuroscience data and models." Philosophical Transactions of the Royal Society B: Biological Sciences 373.1758 (2018): 20170380. * n-t-t :).//ge p pe-t-to O rg

2. Gleeson, P, et al. (2019). "Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits.” Neuron 103, 1-17.) ’

3. Armstrong JD et al. “Towards a virtual fly brain.” Philos. Trans. R. Soc. A367,2387-2397. (d0i:10.1098/rsta.2008.0308))

4. Dura-Bernal, S. et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife 8, e44494., ﬂtt 3://glt.ge p pett0.0 I’g

5.Neymotin S et al. “Human Neocortical Neurosolver (2018)” (doi:10.5281/zenodo0.1446517)
6. Jeffery L. Teeters et al. “Neurodata Without Borders: Creating a Common Data Format for Neurophysiology” Neuron, 88, Issue 4, 2015, 629-634, (doi:10.1016/j.neuron.2015.10.025)

Acknowledgements: This work was supported by Wellcome Trust 101445, NIH UO1EBO17695, NIH RO1IEB022889, NYS DOH 01-C32250GG-3450000

Yy @geppettoengine

