
Figure 4. Comparison of the Geppetto Java architecture and the Geppetto Jupyter Python one. In Java a Tomcat server hosts all the backend
bundles and accepts connections from multiple clients. In Python JupyterHub is responsible for spawning (e.g. creating a new Kubernetes
pod) a new Python Kernel from a Geppetto application Docker file. Each client will have dedicated resources and direct access to the
memory of the Kernel. In both scenarios a Geppetto Model is exchanged between the server and the client. Additionally, the application code
is mostly independent of the architecture, which makes migrating an application from one stack to the other a fairly easy task.

Figure 3. NWB Explorer as an example of an application currently being developed using Python Geppetto. The Neurodata
Without Borders (NWB) [6] file is loaded using PyNWB and it is represented in memory via a Geppetto model which enables
reusing all Geppetto components to represent the data within the files. The NWB file that was loaded by the graphical
interface is also accessible programmatically through an integrated Jupyter notebook allowing advanced users to perform
arbitrary analysis.

Matteo Cantarelli1,2, Adrian Quintana1,3, Facundo Rodriguez1, Filippo Ledda1, Bóris Marin7,5, Matt Earnshaw5, Padraig
Gleeson5, Robert Court4, R. Angus Silver5, Salvador Dura-Bernal6, William W. Lytton6, Giovanni Idili1,2

1 MetaCell Ltd. LLC, Oxford, UK/Boston, USA 2 OpenWorm Foundation, Delaware, USA 3 EyeSeeTea Ltd., London, UK 4 Institute for Adaptive and Neural Computation, University of Edinburgh, UK
5 Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK6 State University of New York Downstate Medical Center, Brooklyn, NY, USA 7 Universidade
Federal do ABC, São Bernardo do Campo, SP, Brazil

Building interactive neuroscience applications in Python using Geppetto

http://geppetto.org

http://git.geppetto.org

@geppettoengine

Geppetto [1] is an open-source platform for building web applications for visualizing
neuroscience models and data, as well as managing simulations. Geppetto underpins a
number of neuroscience applications available to the research community, including
Open Source Brain (OSB) [2], Virtual Fly Brain (VFB)[3], NetPyNE-UI [4] and a new web
user interface for the Human Neocortical Neurosolver [5].
While Geppetto was originally created with a JavaScript based frontend for user
interactions on a browser and a Java based backend hosted on a server we have now
extended it to also use a Python based backend. This means that applications built
with Geppetto now also offer their users the ability to interact directly with any
underlying Python APIs, while seamlessly keeping the user interface synchronised.
Python Geppetto applications can be deployed locally, installed using standard Python
packages (accessible from PyPI) or Docker, or they can be deployed remotely on the
web using Kubernetes and JupyterHub.

User interface Synchronization

Join Us!

Figure 1. NetPyNE-UI [4] as an example of an application built with Python Geppetto. In the screenshot the number of cells for
population M was programmatically changed via an integrated Jupyter notebook (bottom tabbed panel), causing the Graphical
User Interface (GUI, top) to automatically update.

References

1. Cantarelli M et al. "Geppetto: a reusable modular open platform for exploring neuroscience data and models." Philosophical Transactions of the Royal Society B: Biological Sciences 373.1758 (2018): 20170380.
2. Gleeson, P., et al. (2019). ”Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits.” Neuron 103, 1–17.
3. Armstrong JD et al. “Towards a virtual fly brain.” Philos. Trans. R. Soc. A367, 2387–2397. (doi:10.1098/rsta.2008.0308)
4. Dura-Bernal, S. et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife 8, e44494.
5. Neymotin S et al. “Human Neocortical Neurosolver (2018)” (doi:10.5281/zenodo.1446517)
6. Jeffery L. Teeters et al. “Neurodata Without Borders: Creating a Common Data Format for Neurophysiology” Neuron, 88, Issue 4, 2015, 629-634, (doi:10.1016/j.neuron.2015.10.025)

Acknowledgements: This work was supported by Wellcome Trust 101445, NIH U01EB017695, NIH R01EB022889, NYS DOH 01-C32250GG-3450000

Figure 2. HNN-UI [5] as an example of an application built with Python Geppetto. The simulation was executed in Python
using NetPyNE. The analysis plots are generated also in Python while the 3D canvas is reusing the JavaScript Geppetto
component. Geppetto makes it possible to seamlessly combine the different visualizations.

Neuroscience applications built with Python Geppetto have the advantage of bridging the
beginner/advanced user usability gap. Beginners will be able to interact with a user interface
that will simplify the accessibility of the underlying APIs. Expert users will be able, from the
same GUI, to programmatically interact with the underlying data models and Python APIs while
the user interface will be kept updated graphically reflecting any programmatic changes. Three
neuroscience applications are already being built using Python Geppetto: NetPyNE-UI (Figure
1), Human Neocortical Neurosolver UI (Figure 2) and NWB Explorer (Figure 3). All three
applications use jupyterGeppetto, a Jupyter Notebook extension we developed to enable fully
custom web applications to run inside a notebook environment.

Applications built using jupyterGeppetto have, on top also of all the advantages of a standard
Geppetto application, a ready to use set of components (e.g. 3D Canvas, Control Panel, etc.), a
predefined Meta-model capable of representing arbitrary neuroscience data and models which
are instantiated at runtime and a backend capable of running asynchronous simulations using
external simulators (e.g. NEURON), connecting to external data sources (e.g. Neo4j) and persist
user data. For more information about Geppetto please refer to the 2018 publication in
Philosophical Transactions of the Royal Society B, available at http://paper.geppetto.org.

Figure 5. Component diagram behind Geppetto Python user interface synchronisation. A React higher-order component (middle) extends a
Geppetto UI component. The controllable capability adds to the component the ability to connect, disconnect and be in sync with a specified
Python variable.

We developed a series of JavaScript-Python Connectors that let developers easily build a user
interface, whose state can be controlled from a Python model and vice versa. These
connectors are Higher-Order React components (https://reactjs.org/) capable of extending any
standard React control (e.g. TextBox, CheckBox, Dropdown, etc.) to link the underlying value of
the control to a Python model of choice. Once these components will connect to the Python
Kernel any changes made on the user interface (e.g. ticking a checkbox) will automatically
affect the connected Python variable synchronising the value from the UI. In the same way any
programmatic changes made to the variable using the embedded Jupyter Notebook will
automatically be reflected on the connected component.

