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Binary Classification Task

•Reservoir Computing as computationally efficient machine learning system [1, 2]

•The dependence of the performance on reservoir properties has been studied [3, 4]

•We aim at a joint optimization of input and output projection
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Figure 1 Binary classification with Reservoir

Computing. (A) The Reservoir Computing

scheme comprises the projection of inputs onto

recurrently connected neurons and a linear read-

out. Left: Projection of time-dependent input

x(t) via affarent connections u. Middle: Neural

network with random recurrent connectivity W

(reservoir). Right: One-dimensional linear read-

out of high-dimensional network activity via ef-

ferent connections v. (B) Time-dependent stim-

uli represent classes. (C) The trajectories of the

same class are similar. (D) At some readout time,

the states of each class are approximately Gaus-

sian distributed.

Linear Dynamics

• Linear dynamics with neuron-internal noise

(τ∂t + 1)yi(t) =
∑

j

Wijyj + uix(t) + ξi(t)

•Analytically solvable by decomposition into eigen-
modes rα, lα

•Green’s function acts as propagator from input to
output

•Covariance matrix depends only on noise amplitude
Figure 2 Examplary neural response. The analytical

solution of the network dynamics is compared with a

numerical simulation using NEST[5] for some arbitrary
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•Analytical expressions enable systematic optimizations

•Approximate distributions of states as Gaussian

The Surprise

• States of classes form clouds

• For classification, consider classes as Gaussian distributed

•The optimal readout vector then follows as

v = Σ−1d

•Readout is robust against outliers

•Measure quality of the classification: surprise

S =
1

2
dTΣ−1d

•Monotonically connected to misclassification probability

Figure 3 Finding the optimal readout vec-

tor. The covariance matrix Σ and the dis-

tance vector d characterize the separability

of classes. The normal vector of the deci-

sion plane is then v = Σ−1d.

Optimization in the Linear System

•Analytical results for d and Σ allow optimization of S

• Surprise assumes optimal readout, corresponds to joint optimization of u and v

•S can be expressed as quadratic form in the input projection u

S = uTMu

•Maximized by eigenvector to largest eigenvalue of M

• For fixed reservoir, stimulus and readout time, a large increase in classification performance can
be achieved

•The surprise exhibits a sensitive angle dependence on the input projection
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Figure 4 Optimal surprise in response to a stepwise constant stimulus. (A) The surprise reachable with optimal input projection for each

readout time is compared to an arbitrary projection. (B) The input projection is chosen from variation of the angle between the optimal input

direction and a random direction. The variability of the surprise follows from the distribution of eigenvalues of M. Although separabilities

similar to the optimal one can be reached, it is unlikely to achieve a similar classification performance using random input projections.

Readout in the Nonlinear System

• Introduce a small quadratic nonlinearity to mimic transfer function of realistic neurons

•Treat as small perturbation of linear dynamics

•Potential for improved separation by nonlinear dynamics

•Higher order cumulants of stimuli influence the mean and covariance of network states

•The effect of perturbations on the neural trajectory becomes dependent on the state in phase
space

•Covariances become class-dependent for neuron-internal noise

•Consider nonlinear system with deterministic units and class-specific noise

(τ∂t + 1)yi(t) =
∑

j

Wij(yj(t) +
α

2
y2j(t)) + uix(t)

•Analytical connection between stimuli and network states required for optimzation of the input
projection

•An approximation of the dynamics can in general be achieved from field theoretical methods [6]

• First order correction given by diagrams:

0th order 1st order

x y +

x

x

y = y

G(1)x xG(2)x

The Soft Margin

• Surprise not applicable for class-dependent covariance

•Optimize distances to decision plane instead of misclassification probability

κ = min
ν
(ζν(v

Tyν − θ))

• Soft margin replaces margin by differentiable approximation

Oη(v, θ) = −
1

η
ln
∑

ν

exp(−ηζν(v
Tyν − θ))

•The dependence on the threshold θ can be addressed with appropriate shift of coordinates

•The gradient can be calculated to desired degree of complexity of the network state distribution
using a cumulant expansion

∂

∂vi
Oη(v) = 〈ζνy

ν〉 − η
∑

j

Σijvj

•Σ denotes the second order cumulant of ζνy
ν and can be understood as the covariance of all

points, irrespective of the class

• In Gaussian approximation, a stable fix point can be found for invertible Σ that is equivalent to
the surprise

• Separation of classes is composed of linear and nonlinear separability of the input

〈ζνy
ν〉 = G(1)(〈xν〉ν∈+ − 〈xν〉ν∈−) +G(2)(〈xνxνT〉ν∈+ − 〈xνxνT〉ν∈−)

•Optimizaton of the soft margin nearly maximizes the margin

•Analytic connection between input and classification performance as in the linear system

Figure 6 Gradient descent of the soft margin. The response of

a nonlinear reservoir to a delta peak stimulus is classified using

the gradient descent on the soft margin. The margin for the

readout vector found in every optimization step resembles the

soft margin, shifted by an offset.

Discussion

•Classification performance increases in linear system by joint optimization of input and output

•Readout specified by direct calculation rather than training algorithm

•Readout method robust against outliers

•Analogous method for nonlinear system

•Benefit from optimization of the input projection still unanswered in the nonlinear system
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