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Binary Classification Task Readout in the Nonlinear System

e Introduce a small quadratic nonlinearity to mimic transfer function of realistic neurons

e Reservoir Computing as computationally efficient machine learning system [1, 2] e Treat as small perturbation of linear dynamics

e The dependence of the performance on reservoir properties has been studied [3, 4] e Potential for improved separation by nonlinear dynamics

o We aim at a joint optimization of input and output projection e Higher order cumulants of stimuli influence the mean and covariance of network states

(A) Figure 1 Binary classification with Reservoir e [ he effect of perturbations on the neural trajectory becomes dependent on the state in phase
Computing.  (A) The Reservoir Computing space

scheme comprises the projection of inputs onto _ _ :

recurrently connected neurons and a linear read- e Covariances become class-dependent for neuron-internal noise

. Left: Projection of time- i : : : : e :
out. Leit: Projection of time-dependent input e Consider nonlinear system with deterministic units and class-specific noise

x(t) via affarent connections u. Middle: Neural

network with random recurrent connectivity W @}

(reservoir). Right: One-dimensional linear read- (Tat + 1)y2(t) — Z I/Vlj(yj(t) T+ Qyjz(t)) T ”LLZZU(t)
J

out of high-dimensional network activity via ef-
ferent ti . (B) Time-dependent stim- - - - - - - - -
erent connections v. (B) Time-dependent stim e Analytical connection between stimuli and network states required for optimzation of the input
uli represent classes. (C) The trajectories of the S
same class are similar. (D) At some readout time, projection
the states of each class are approximately Gaus-

o et e An approximation of the dynamics can in general be achieved from field theoretical methods [6]

e First order correction given by diagrams:
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e Covariance matrix depends only on noise amplitude _ | e Soft margin replaces margin by differentiable approximation
Figure 2 Examplary neural response. The analytical
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numerical simulation using NESTI[5] for some arbitrary
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e [ he dependence on the threshold 6 can be addressed with appropriate shift of coordinates
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e Analytical expressions enable systematic optimizations e > denotes the second order cumulant of (, 4 and can be understood as the covariance of all
e Approximate distributions of states as Gaussian points, irrespective of the class

e In Gaussian approximation, a stable fix point can be found for invertible > that is equivalent to

The Surprise the surprise

e Separation of classes is composed of linear and nonlinear separability of the input

e States of classes form clouds A (YY) = G<1>(<$”>V6+ — (z"),. ) + G<2>(<xVxVT>V€+ _ <xVxVT>V€_)
e For classification, consider classes as Gaussian distributed

e [ he optimal readout vector then follows as

v =""1d

e Readout is robust against outliers

e Optimizaton of the soft margin nearly maximizes the margin

e Analytic connection between input and classification performance as in the linear system

e Measure quality of the classification: surprise
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e Analytical results for d and X allow optimization of S —
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e Surprise assumes optimal readout, corresponds to joint optimization of u and v

e S can be expressed as quadratic form in the input projection u

S = u Mu

e Maximized by eigenvector to largest eigenvalue of M

Discussion

e Classification performance increases in linear system by joint optimization of input and output
e For fixed reservoir, stimulus and readout time, a large increase in classification performance can

_ e Readout specified by direct calculation rather than training algorithm
be achieved

. . . _ o e Readout method robust against outliers
e [ he surprise exhibits a sensitive angle dependence on the input projection

(A) (B) e Analogous method for nonlinear system
| | | - ‘theory | 1.4 - S ) . . . . . . . . . .
| e Benefit from optimization of the input projection still unanswered in the nonlinear system
optima . 1o \\\\‘
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similar to the optimal one can be reached, it is unlikely to achieve a similar classification performance using random input projections.
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