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Fundraising

OCNS, Inc is a US non-profit, 501(c)(3) serving organization supporting the Computational Neuroscience com-
munity internationally. We seek sponsorship from corporate and philantropic organizations for support of student
travel and registration to the annual meeting, student awards and hosting of topical workshops. We can also host
booth presentations from companies and book houses. For further information on how you can contribute please
email http://sponsorship@cnsorg.org.




General Information

Meeting venue

Jungmun Sightseeing Complex
Seogwipo City, Jeju-do

South Korea
http://www.iccjeju.co.kr/EN/Main
Phone +82-64-735-1000

CNS 2016 will be held in the International Convention Center Jeju (ICC Jeju), South Korea. ICC Jeju is
located in Jungmun Tourist Complex in Jeju island, which is a volcanic island and a world renowned resort in
South Korea. Main Meeting, Poster session, and Banquet will be held on the 3rd floor in ICC Jeju. The meeting
rooms for the tutorials and workshop will be on 3rd and 4th floor.

main conference hall (~ 600) meeting room meeting room

VIP Room

VIP room is prepared for invited speakers. The location of the VIP room is 304 on the third floor.

Getting to the conference venue

Direct International Flights to Jeju island

The most convenient way to travel to Jeju Island is by airplane. The
flights link it with China, Japan, Taiwan and all major Korean cities
are within one-hour flight. Jeju International Airport is conveniently
located at the center of East Asia and is easily accessible from
China, Japan, and Southeast Asia. The airport currently services
16 direct international flights and 13 domestic flights.

Femae,  mSecgwige

ICCIEU
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Transfer via Major Hub Airports

Visitors from countries without direct flights may easily travel to Jeju through major airports such as those in
Tokyo, Osaka, Beijing, and Shanghai.

Transfer via Incheon International Airport, Korea

Incheon International Airport is the gateway to Korea. It was ranked the 9th highest international passenger
traffic with 79 airlines connecting to 182 destination cities. Passengers can either transfer to a direct flight to Jeju
from Incheon, or move to Gimpo Airport and transfer to a domestic flight from there. It is a one-hour-flight from
Incheon or Gimpo to Jeju. To get to Gimpo Airport from Incheon, visitors can take a shuttle bus or high-speed
rail. It takes approximately 30 minutes, and shuttle buses run every 5 minutes.

i
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Transfer via Gimhae International Airport, Korea

You can access Gimhae Int’l Airport by international flights form China (Shanghai), Japan (Tokyo, Fukuoka,
Nagoya and Osaka), Russia, Taiwan, Thailand, The Philippines and Vietnam. The domestic flights from Gimhae
Int’'l Airport, which is the second largest international airport in Korea, to Jeju Int’l Airport run between 08:00 to
22:00 at roughly 15 minutes intervals. 40 domestic flights are in service daily on average as of December 2013.

Visa-Free Entry

Visa-free Entry to Jeju: 180 Countries. (Only 11 countries are required to apply for a visa: Afghanistan, Cuba,
Ghana, Iran, Iraq, Libya, Nigeria, Macedonia, Palestine, Sudan, and Syria). Duration of stay: up to 30 days
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From Jeju International Airport to ICC Jeju (and hotels)
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Take an Airport Limousine Bus from Jeju Int’l Airport to ICC Jeju and conference hotels. The limousine buses
[Bus No. 600] run between 06:20 to 22:00 at roughly 15 minutes intervals, and the cost is KRW4,000 (about USD
3.5). It takes about 50~60 minutes.

Taxi guide (Jungmun - Jeju International Airport)

Since the taxi fare is fixed, please confirm the distance before taking a taxi. Fare (Korean won): About 30,000
won (Maximum USD 30); Distance: 40km; Duration: 40—-45 minutes. Advanced reservation is recommended if
you plan to rent a car. Upon arrival, you can sign up for rental cars at the rent-a-car desk nearby airport exit.

Local information

Good to Know
Detailed local information is available on the Jeju tourism organization website at http://www.ijto.or.kr/english/

Official Language
The official language of the meeting is English. Interpreting is not provided.

Insurance
The organisers do not accept responsibility for individual medical, travel or personal insurance. All participants
are strongly advised to take out their own personal insurance before travelling to Jeju.

Currency & Banking

Korea's official monetary unit is the won. Credit Card: Most of the businesses in Korea widely uses and accepts
payment by credit cards at major hotels, department stores, large restaurants, and stores. Visa, Master, American
Express and other credit cards can be used; however do check the service availability before making purchase
as some stores may not be subject to this service. Exchanging Money: When you need to exchange your foreign
currency into Korean won, visit a bank, exchange service center, or an authorized exchange. (Bank business
hour: 09:00-16:00, closed on Saturdays, Sundays and public holidays.)

Currency Converter: www.xe.com/currencyconverter (Korean, English, Japanese, Chinese)

Time Zone
Korea Standard Time (KST) is 9 hours ahead of Greenwich mean time: GMT+9.

Electricity
The standard voltage in Korea is 220 volts. The outlet has two round holes and is the same type used in France,
Germany, Austria, Greece, Turkey, and many other countries.

Weather
Jeju island has a mild oceanic climate throughout the year with the smallest annual temperature range in South
Korea. The temperature for the hottest summer months (in July) averages no more than 33.0°C in and no less
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than -2.7°C for winter. During the meeting in early July, the lowest temperature ranges from 21-23°C and the
hottest temperature ranges between 26-28°C. (http://www.iccjeju.co.kr/EN/AboutJeju/Info)

Tourist Spots

With its natural beauty and unique island culture, Jeju provides with hundreds of tour options including pristine
seas and fantastic rock cliffs, horses grazing on wide green meadows, and a variety of specialty museums. The
island itself is an extinct volcano with its peak jutting skyward at the center and a broad, gentle littoral all the
way around showing a very unique geographical condition. There are bountiful forests and ravines, fantastic rock
formations and volcanic craters, and caves and grasslands that together paint a natural scene of breathtaking
beauty. Sparkling seas and tiny islets surround Jeju, with rocks scattering amidst sandy beaches to create a
magnificent view everywhere you look. Hallasan Mountain rises in the center of Jeju to 1950m above sea level.
The rest of the island slopes down from its summit and is covered with dark gray volcanic rocks and volcanic ash
soil. Relatively isolated from the rest of the world, the island’s nature has been well preserved in its prehistoric
state. http://english.jeju.go.kr/index.php/contents/Aboutdeju/intro/intro.

Leisure

The island also offers a variety of leisure activities; snorkelling, scuba diving, kayaking, yachting, windsurfing
hiking, golfing, fishing, horseback riding and paragliding, are available at numerous places throughout the island.
Near Jungmun Resort Complex, where ICC Jeju is located, there are a variety of sight-seeing opportunities
such as; the public 18-hole Jungmun Golf Course (about a 5-minute-ride), Yeomiji Botanical Garden (the largest
indoor botanical garden in Asia), the Teddy Bear Museum, the Africa Museum, the Sound Island Museum, and
Pacific Land. Scenic natural wonders include: Jungmun Beach, Cheonjeyeon Waterfall (according to the legend,
seven nymphs guarding the heavenly emperor descended at night to bathe at night), and Jusangjeolli (natural
stone pillars built up along the coast which are formed by magma piercing through cracks of the surface-rock.
(http://www.iccjeju.co.kr/EN/AboutJeju/TourAndLeisure)

Welcome Reception

The welcome reception will be provided at the 6:30 pm of July 2 (Saturday), the first day of the conference, where
finger foods and drinks are freely served at the “Ocean View” on the 5th floor in the Convention center (Jeju ICC).
Additional order for wine will be charged. Attendees can enjoy social interactions with other participants during
the reception.

Banquet

On the fourth day of the conference (July 5, Tuesday), we will prepare the banquet at 6:30 pm at the "Tamna
Hall B” on the 5th floor in the Convention center (Jeju ICC). Dinner and wine will be served to the attendees
who registered with the option of banquet included. Attendees can also purchase the banquet tickets for their
companion when they pre-registered. If you havena€™t already purchased a ticket during registration, you can
add one to your registration.

The banquet ticket will cost USD 50 per person. In the beginning of the banquet, the organizing committee will
prepare a welcome ceremony. Then, there will be a celebration event with the performance of Korean traditional
music and arts. During the event, the dinner and wine will be served.

Social night out

In the evening of the third day of the conference (6:30 pm, July 4, Monday), a social party will be prepared at the
“Ocean View” on the 5th floor in the Convention center (Jeju ICC) where attendees can enjoy drinks and food
with social interactions. Attendees purchase tickets for additional food and drinks on site.

Restaurant info

The Delizia restaurant is located on the third floor at the convention enter. It serves both Korean and Western
cuisine, www.iccjeju.co.kr/Facilities/Delizia. You can have lunch or dinner here during the conference. Korean
and Western restaurants are also in Booyoung Hotel which is just next to Jeju ICC. There are many restaurants
within 10 mins walking distance from Jeju ICC.
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T

T2

T3

T4

T5

Tutorials

Subcellular modeling
301A + 301B, 2-Jul-15, 9:00-16:30

lain Hepburn, Okinawa Institute of Science and Technology, Japan
Andrew R Gallimore, Okinawa Institute of Science and Technology, Japan

Detailed modeling of structure and function at the cellular level
302, 2-Jul-15, 9:00-16:30

Ben Torben-Nielsen, University of Hertfordshire, UK

Yann Le Franc, e-Science Data Factory, France

Simulation of large-scale neural network
303A + 303B, 2-Jul-15, 9:00-16:30

Jun Igarashi, RIKEN and Okinawa Institute and Science and Technology, Japan
Hannah Bos, Julich Research Centre and JARA, Julich, Germany

Nonlinear dynamical analysis of brain datasets
402A, 2-Jul-15, 9:00-12:00

Jaeseung Jeong, Korea Advanced Institute of Science and Technology, South Korea

Modeling and analysis of extracellular potentials
402B, 2-Jul-15, 9:00-16:30

Gaute T. Einevoll, Norwegian University of Life Sciences & University of Oslo, Norway
Espen Hagen, Julich Research Centre and JARA, Julich, Germany
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Main Meeting

Saturday July 2
9:00 - Registration (Halla Hall, 3rd floor)
9:00 — 16:30 Tutorials
17:00 - 17:15 Welcome and announcements

17.15-18:15 K1 Keynote 1: (Halla Hall)

Inferring learning rules in cortical circuits
Nicolas Brunel

18:30 Welcome reception (Ocean View, 5th floor)

Sunday July 3

9:00-9:10 Announcements

9:10-10:10 K2 Keynote 2:
Functional advantages of cell-type heterogeneity in neural circuits
Tatyana O. Sharpee

10:10 - 10:40 Break
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10:40 - 11:00
11:00-11:20
11:20 — 12:00
12:00 - 13:30
13:30 — 13:50
13:50 — 14:10
14:10 — 14:30
14:30 — 14:50
14:50 — 15:20
15:20 — 15:40
15:40 — 16:00
16:00 — 19:00
9:00 - 9:10

o1

02

F1

03

04

05

06

o7

o8

Oral session I: Oscillations and rhythms 1

Assessing irregularity and coordination of spiking-bursting rhythms in central pat-
tern generators
Irene Elices*, David Arroyo, Rafael Levi, Francisco B. Rodriguez, and Pablo Varona

Regulation of top-down processing by cortically-projecting parvalbumin positive
neurons in basal forebrain

Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James McKenna, Ritchie Brown,
Robert W. McCarley, and Jee Hyun Choi*

Featured oral 1:

Precise recruitment of spiking output at theta frequencies requires dendritic h-
channels in multi-compartment models of hippocampal interneurons
Vladislav Sekulic*, Frances Skinner

Break for lunch

Oral session lI: Visual and auditory processing

Modeling auditory stream segregation, build-up and bistability
James Rankin*, Pamela Osborn Popp, and John Rinzel

Strong competition between tonotopic neural ensembles explains pitch-related dy-
namics of auditory cortex evoked fields
Alejandro Tabas*, André Rupp, and Emili Balaguer-Ballester

A simple model of retinal response to multi-electrode stimulation
Matias Maturana, David B Grayden, Shaun Cloherty, Tatiana Kameneva, Michael Ibbot-
son, and Hamish Meffin*

Noise correlations in V4 area correlate with behavioral performance in visual dis-
criminaton task
Veronika Koren*, Timm Lochmann, Valentin Dragoi, and Klaus Obermayer

Break

Oral session lll: Single-cell properties and modeling

Input-location dependent gain modulation in cerebellar nucleus neurons
Maria Psarrou*, Maria Schilstra, Neil Davey, Ben Torben-Nielsen, and Volker Steuber

Analytic solution of cable energy function for cortical axons and dendrites
Huiwen Yu, Michael L. Hines, and Yuguo Yu*

Poster session I: Posters P1 — P68 (3F lobby, 3rd floor)

Monday July 4

9:10-10:10 K3

10:10 — 10:40

Announcements
Keynote 3:

Mesoscopic modeling of propagating waves in visual cortex
Alain Destexhe

Break
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10:40 — 11:00
11:00 - 11:20
11:20 — 12:00
12:00 — 13:30
13:30 — 13:50
13:50 — 14:10
14:10 — 14:50
14:50 — 15:20
15:20 — 15:40
15:40 — 16:00
16:00 — 18:30
18:30

20

09

o10

F2

O11

012

F3

013

014

Oral session IV: Network reconstruction, estimation and visualization

C. elegans Interactome: Interactive Visualization of Caenorhabditis elegans Worm
Neuronal Network
Jimin Kim*, Will Leahy, and Eli Shlizerman

Is the Model Any Good? Objective Criteria for Computational Neuroscience Model
Selection

Justas Birgiolas*, Richard Gerkin, and Sharon Crook

Featured oral 2:

Kernel methods in reconstruction of current sources from extracellular potentials
for single cells and the whole brains
Daniel K Wojcik*, Chaitanya Chintaluri, Dorottya Cserpan, and Zoltan Somogyvari

Break for lunch

Oral session V: Oscillations and rhythms 2

Cooperation and competition of gamma oscillation mechanisms
Atthaphon Viriyopase*, Raoul-Martin Memmesheimer, and Stan Gielen

A discrete structure of the brain waves
Yuri Dabaghian*, Justin Devito, and Luca Perotti

Featured oral 3:

The synchronized periods depend on intracellular transcriptional repression
mechanisms in circadian clocks.
Jae Kyoung Kim*, Zachary Kilpatrick, Matthew Bennett, and Kresimir Josic

Break

Oral session VI: Synaptic plasticity

Direction-specific silencing of the Drosophila gaze stabilization system
Anmo Kim*, Lisa Fenk, Cheng Lyu, and Gaby Maimon

What fruit fly think about values? —A model about olfactory associative learning
Chang Zhao*, Yves Widmer, Simon Sprecher, and Walter Senn

Poster session IlI: Posters P69 — P135 (3F lobby, 3rd floor)

Social night out (Ocean View, 5th floor)



9:00 - 9:10

Tuesday July 5

9:10-10:10 K4

10:10 - 10:40
10:40 - 11:00
11:00-11:20
11:20-11:40
11:40 - 12:00
12:00 - 13:30
13:30 — 14:20
14:20 — 14:40
14:40 - 15:00
15:00 — 15:30
15:30 — 18:30
18:30

9:00 — 19:00

015

016

017

018

019

020

Announcements

Keynote 4:

Dynamics and Biomarkers of Mental Disorders
Mitsuo Kawato

Break

Oral session VII: Large networks

Effects of ionic diffusion on power spectra of local field potentials (LFP)

Geir Halnes*, Tuomo Maki-Marttunen, Daniel Keller, Klas H. Pettersen, Ole Andreassen,

and Gaute T. Einevoll

Large-scale cortical models towards understanding relationship between brain

structure abnormalities and cognitive deficits
Yasunori Yamada*

Spatial coarse-graining the brain: Origin of minicolumns
Moira Steyn-Ross*, Alistair Steyn-Ross

Modeling large-scale cortical networks with laminar structure
Jorge F Mejias*, John Murray, Henry Kennedy, and Xiao-Jing Wang

Break for lunch

OCNS Member Meeting, room 400

Oral session VIll: Information theory

Information filtering by partial synchronous spikes in a neural population
Alexandra Kruscha*, Jan Grewe, Jan Benda, and Benjamin Lindner

Decoding context-dependent olfactory valence in Drosophila
Laurent Badel*, Kazumi Ohta, Yoshiko Tsuchimoto, and Hokto Kazama

Break

Poster session lll: Posters P136 — P201 (3F lobby, 3rd floor)

Banquet (Tamna Hall B, 5th floor)

Wednesday July 6 and Thursday July 7

Workshops

21



W1

w2

w3

w4

W5

W6

22

Workshops

Methods of Information Theory in Computational Neuroscience
301A + 301B, Wednesday and Thursday, 9:00 — 16:30

Joseph T Lizier, The University of Sydney

Justin Dauwels, Nanyang Technological University

Taro Toyoizumi, RIKEN Brain Science Institute

Alexander G Dimitrov, Washington State University

Lubomir Kostal, Academy of Sciences of the Czech Republic

Connectome: Structure and Large Scale Dynamics
302, Wednesday, 9:00 — 16:30

Leonardo L Gollo, QIMR Berghofer Medical Research Institute, Australia

James A. Roberts, QIMR Berghofer Medical Research Institute, Australia

Statistical Analysis for Neural Time Series
302, Thursday, 9:00 — 16:30

Il Memming Park, Stony Brook University

lan Stevenson, University of Connecticut

Multi-Area Models of Cortex
402A, Thursday, 9:00 — 16:30

Sacha Jennifer van Albada, Institute of Neuroscience and Medicine (INM-6) Computational and Sys-

tems Neuroscience and Institute for Advanced Simulation (IAS-6) Theoretical Neuroscience and JARA
BRAIN Institute |, Julich Research Centre, Julich, Germany

Gustavo Deco, Center for Brain and Cognition, Computational Neuroscience Group, Department of

Information and Communication Technologies & Institucié Catalana de la Recerca i Estudis Avancats
(ICREA), Universitat Pompeu Fabra, Barcelona, Spain

Dynamical principles in Neural circuits
402A, Wednesday, 9:00 — 12:00

Andrey Shilnikov, Georgia State University, USA

Akira Sakurai, Georgia State University, USA

Cortical Microcircuits: Understanding network structure and function in cortical processing
303A + 303B, Wednesday, 9:00 — 12:00

Hamish Meffin, National Vision Research Institute, and Department of Optometry and Visual Science,

The University of Melbourne
Anthony Burkitt, Department of Electrical and Electronic Engineering, The University of Melbourne




W7

Recent advances and applications in real-time single-trial EEG analysis
303A + 303B, Wednesday, 13:30 — 16:30

Tzyy-Ping Jung, University of California, San Diego

John K. Zao, Chiao-Tung University

Jee Hyun Choi, Korea Institute of Science and Technology
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Tutorials

T1 Subcellular modeling
301A + 301B, 2-Jul-15, 9:00-16:30

lain Hepburn, Okinawa Institute of Science and Technology, Japan
Andrew R Gallimore, Okinawa Institute of Science and Technology, Japan

Many important neural functions are controlled by complex networks of intracellular proteins and signalling
molecules. A variety of modular signalling pathways connect and interact to form large networks possessing
emergent properties irreducible to individual molecules or pathways. These include bistable and ultrasensitive
switches, as well as feedback regulation, and synchronisation. These properties are essential for the induction
and regulation of critical neural functions, such as long-term depression and potentiation. The complexity of these
networks renders their analysis by inspection alone unfeasible, and we must turn to computational modelling to
understand them.

The first half of this tutorial will focus on the structure and function of intracellular networks and deterministic
methods for modelling and analysing them. We will use a number of important subcellular pathways to illustrate
the key concepts and demonstrate the importance and utility of deterministic methods in their modelling and
simulation. We will discuss both the biochemistry of these pathways and their mathematical representation. We
will then discuss how these modular pathways connect and interact to form large networks. Important network
motifs and their emergent properties will also be explained with specific examples given, as well as mathematical
methods for their analysis. We will discuss a number of tools for simulating these differential equation models,
but will use the open source software Copasi in the tutorial, owing to its ease of installation and use. Participants
will have the opportunity to build and simulate their own signalling pathway model in Copasi. This part of the
tutorial will serve as a good introduction to molecular systems modelling for those with little prior experience.

The second half of the tutorial will focus on more advanced modelling approaches based on several state of
the art software packages. We will explain how the time evolution of real molecular systems can diverge from a
differential equation-based description due to concepts such as probabilistic interactions in small volumes and
spatial heterogeneity. We will describe mathematical approaches to modelling stochastic effects and diffusion
and introduce a number of software tools that are based on such descriptions. These include particle-tracking
packages such as MCell and Smoldyn, and voxel-based packages such as NeuroRD and STEPS. The features
of the different software tools will be discussed and illustrated with specific practical examples. Finally, we will
briefly discuss recent advances and expected near-future directions of the field, including massively parallel
implementations and membrane potential coupling.

References
[1] Antunes, G., De Schutter, E. A Stochastic Signaling Network Mediates the Probabilistic Induction of Cere-
bellar Long-Term Depression. Journal of Neuroscience 32, 9288-9300, 2012.

[2] Bhalla, U.S., lyengar, R. Emergent properties of networks of biological signaling pathways. Science 283,
381-387, 1999.

[3] Eungdamrong, N.J., lyengar, R. Computational approaches for modeling regulatory cellular networks.
Trends in Cell Biology 14, 661-669, 2004.

[4] Gallimore, A.R., Aricescu, A.R., Yuzakl, M., Calinescu, R. A Computational Model for the AMPA Receptor
Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression. Plos Computational Biology
12, 23, 2016.

[5] Kotaleski, J.H., Blackwell, K.T. Modelling the molecular mechanisms of synaptic plasticity using systems
biology approaches. Nature Reviews Neuroscience 11, 239-251, 2010.

[6] Copasi: http://copasi.org/
[7] SimBiology (Matlab): http://uk.mathworks.com/products/simbiology/

[8] Genesis: http://www.genesis-sim.org/
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[9] STEPS: http://steps.sourceforge.net/STEPS/default.php
[10] MCell: http://mcell.org/
[11] Smoldyn: http://www.smoldyn.org/

[12] NeuroRD: http://krasnowl.gmu.edu/CENlab/software.html
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T2 Detailed modeling of structure and function at the cellular level
302, 2-Jul-15, 9:00-16:30

Ben Torben-Nielsen, University of Hertfordshire, UK
Yann Le Franc, e-Science Data Factory, France

In the morning session, we introduce the morphology of dendrites and axons, the specialised input and output
arborisations of neurons. Their shape is pivotal for brain functioning for two reasons: First, overlap between
dendrites and axons defines the micro-circuit. Second, the shape and membrane composition of dendrites define
how inputs are transformed into relevant outputs. In this tutorial, we will start by explaining the importance of
morphologies and how to quantify them (say, in order to distinguish healthy from pathological morphologies). We
will touch on algorithmic synthesis of large numbers of unique neuronal morphologies for application in large-
scale modelling efforts. We finish the morning session with a hands-on tutorial using btmorph [1] to analyse
populations of neuronal morphologies.

In the afternoon session, we explain how neuronal dynamics takes place at the single neuron level and how den-
drites turn input signals into an output. We briefly explain the conductance-based and compartmental-modelling
paradigms to simulate the dynamics on neurons with detailed membrane composition and elaborate neuronal
morphologies. We then proceed to show several free community resources to construct, simulate, share and
analyse single neuron models. We end the afternoon session with a hands-on demonstration of how to construct
and simulate detailed models of neurons using NEURON and python [2].

References

[1] Torben-Nielsen B. An efficient and extendable Python library to analyze neuronal morphologies. Neuroin-
formatics 12:619-622, 2014 .

[2] James G.K., Hines M., Hill S., Goodman P.H., Markram H.,1 Schirmann F. Component-Based Extension
Framework for Large-Scale Parallel Simulations in NEURON. Front. Neuroinformatics, 3:1-12, 2009.
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T3 Simulation of large-scale neural network
303A + 303B, 2-Jul-15, 9:00-16:30

Jun Igarashi, RIKEN and Okinawa Institute and Science and Technology, Japan
Hannah Bos, Julich Research Centre and JARA, Julich, Germany

The first part of this tutorial is concerned with the emergence of large scale neuronal networks in neuroscience
and the resulting challenges in software and hardware that are necessary to support large scale simulations.
We will start by an introduction covering the development of networks examined in neuroscience and give an
overview over existing large scale models. Subsequently we will give an overview over the history of supercom-
puters used for simulations of large scale networks. The introduction is followed by two lectures going into detail
of the implementation of neuronal networks shedding light on the software as well as the hardware aspects.
We will first discuss how a neural simulator can be implementation on the example of NEST [1]. The lecture
concerned with the hardware aspect will introduce how calculation of neural network simulation is executed
using processors and memory in a computer, with a story of recent representative semi-conductor chips and
supercomputers. The second part of the tutorial focuses on hands-on exercise using NEST. The tutorial does
not assume any prior knowledge in NEST. However, it is recommended that participants install NEST on their
laptops beforehand [2]. We will start by introducing the basic commands of NEST and work our way up to the
implementation of a random balanced network [3, 4]. The session is planned as an interactive mixture of lectures
and exercise. At the end a final lecture on a basal ganglia-thalamo-cortical circuit model that helps to understand
Parkinson’a€™'’s disease motor symptoms, will introduce an example of a large-scale network in more detalil
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T4 Nonlinear dynamical analysis of brain datasets
402A, 2-Jul-15, 9:00-12:00

Jaeseung Jeong, Korea Advanced Institute of Science and Technology, South Korea

Nonlinear dynamical analysis is an advanced method to analyze the time series based on the hypothesis that
the time series is generated by nonlinear dynamical processes. This method reveals dynamical properties of
the time series including dimensional complexity, sensitive dependence on initial conditions, dynamical nonsta-
tionarity that cannot be assessed by conventional linear spectral methods. For last three decades, nonlinear
dynamical analysis of neural signals and the EEG has been used to successfully describe neuronal dynamics
and diagnose neuropsychiatric disorders such as Alzheimer’s disease, Epileptic seizure, Schizophrenia, Depres-
sion, Addiction, Post-traumatic stress disorder (PTSD), and Attention-deficit Hyperactivity disorder (ADHD) and
to suggest potential treatments for them based on their disturbed brain dynamics.

In this tutorial, we introduce the basic ideas underlying the nonlinear dynamical analysis and define important
concepts addressed in this analysis (e.g., Deterministic chaos, Embedding theorem, Delay coordinates, Surro-
gate data, etc.). Then, we briefly review main findings of neuronal signals and EEG abnormalities in various
neuropsychiatric patients obtained from both conventional spectral analysis and nonlinear dynamical methods.
Particularly, we address how nonlinear dynamical methods prominently contribute to Neuroscience, Psychiatry
and Neurology as a biomarker of brain dynamics and a tool for diagnosing Alzheimer’s disease, Schizophrenia,
Epileptic seizure, and Attention-deficit Hyperactivity disorder (ADHD) in detail.
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T5 Modeling and analysis of extracellular potentials
402B, 2-Jul-15, 9:00-16:30
Gaute T. Einevoll, Norwegian University of Life Sciences & University of Oslo, Norway
Espen Hagen, Julich Research Centre and JARA, Julich, Germany

While extracellular electrical recordings have been one of the main workhorses in electrophysiology, the inter-
pretation of such recordings is not trivial [1,2,3]. The recorded extracellular potentials in general stem from a
complicated sum of contributions from all transmembrane currents of the neurons in the vicinity of the electrode
contact. The duration of spikes, the extracellular signatures of neuronal action potentials, is so short that the
high-frequency part of the recorded signal, the multi-unit activity (MUA), often can be sorted into spiking con-
tributions from the individual neurons surrounding the electrode [4]. No such simplifying feature aids us in the
interpretation of the low-frequency part, the local field potential (LFP). To take a full advantage of the new gen-
eration of silicon-based multielectrodes recording from tens, hundreds or thousands of positions simultaneously,
we thus need to develop new data analysis methods grounded in the underlying biophysics [1,3,4]. This is the
topic of the present tutorial.

In the first part of this tutorial we will go through

1. the biophysics of extracellular recordings in the brain,

2. a scheme for biophysically detailed modeling of extracellular potentials and the application to modeling
single spikes [5-7], MUAs [8] and LFPs, both from single neurons [9] and populations of neurons [8,10,11],

3. methods for estimation of current source density (CSD) from LFP data, such as the iCSD [12-14] and kCSD
methods [15],

4. decomposition of recorded signals in cortex into contributions from various laminar populations, i.e., (i)
laminar population analysis (LPA) [16,17] based on joint modeling of LFP and MUA, or (ii) a scheme using
LFP and known constraints on the synaptic connections [18].

In the second part, the participants will get demonstrations and, if wanted, hands-on experience with

1. LFPy (github.com/LFPy) [19], a versatile tool based on Python and the simulation program NEURON [20]
(www.neuron.yale.edu) for calculation of extracellular potentials around neurons, and

2. new results from applying the biophysical forward-modelling scheme to predict LFPs from comprehensive
point-neuron network models, in particular Potjans and Diesmann’s model of the early sensory cortical
microcircuit using hybridLFPy [22,23] will be presented.
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Invited Presentations

Nicolas Brunel Departments of Statistics and Neurobiology,
The University of Chicago,
Chicago, IL 60637, USA

K1 — Inferring learning rules in cortical circuits

Understanding the mechanisms of learning and memory is one of the major challenges in neuroscience. The
dominant theory holds that information about sensory inputs is stored in cortical circuits thanks to synaptic
plasticity. In spite of decades of research, the exact rules governing how synapses change as a function of the
activity of pre- and post-synaptic neurons remain the subject of debate. In this talk, | will present two novel
approaches for investigating the mechanisms of learning and memory. The first consists in inferring a learning
rule from in vivo data, using experiments comparing the statistics of responses of neurons to large sets of
novel and familiar stimuli. The second consists in exploring the consequences of an information optimization
principle on the statistics of synaptic connectivity. | will show how methods from statistical physics can be used
to characterize the statistics of connectivity in networks that optimize information storage, and compare the
theoretical results with available data.

Tatyana O. Sharpee Computational Neurobiology Laboratory
. The Salk Institute for Biological Studies,
E San Diego, California, USA

\

K2 - Functional advantages of cell-type heterogeneity in neural circuits

Neural circuits are notorious for the complexity of their organization. Part of this complexity is related to the
number of different cell types that work together to encode stimuli. | will discuss theoretical results that point to
functional advantages of splitting neural populations into subtypes, both in feedforward and recurrent networks.
There results outline a framework for categorizing neuronal types based on their functional properties. Such
classification scheme could augment classification schemes based on molecular, anatomical, and electrophysi-
ological properties.
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Alain Destexhe UNIC, CNRS, Gif sur Yvette,
and The European Institute for Theoretical Neuroscience (EITN),
Paris, France

K3 — Mesoscopic modeling of propagating waves in visual cortex

Propagating waves are large-scale phenomena widely seen in the nervous system, in both anesthetized and
awake or sleeping states. Recently, the presence of propagating waves at the scale of microns to millimeters was
demonstrated in the primary visual cortex (V1) of macaque monkey. Using a combination of voltage-sensitive dye
(VSD) imaging in awake monkey V1 and model-based analysis, we showed that virtually every visual input is
followed by a propagating wave (Muller et al., Nat Comm 2014). The wave was confined within V1, and was
consistent and repeatable for a given input. Interestingly, two propagating waves always interact in a suppressive
fashion, and sum sublinearly. This is in agreement with the general suppressive effect seen in other circum-
stances in V1 (Bair et al., J Neurosci 2003; Reynaud et al., J Neurosci 2012).

To investigate possible mechanisms for this suppression we have designed mean-field models to directly inte-
grate the VSD experiments. Because the VSD signal is primarily caused by the summed voltage of all mem-
branes, it represents an ideal case for mean-field models. However, usual mean-field models are based on neu-
ronal transfer functions such as the well-known sigmoid function, or functions estimated from very simple models.
Any error in the transfer function may result in wrong predictions by the corresponding mean-field model. To palli-
ate this caveat, we have obtained semi-analytic forms of the transfer function of more realistic neuron models. We
found that the same mathematical template can capture the transfer function for models such as the integrate-
and-fire (IF) model, the adaptive exponential (AdEx) model, up to Hodgkin-Huxley (HH) type models, all with
conductance-based inputs.

Using these transfer functions we have built “realistic” mean-field models for networks with two populations of
neurons, the regular-spiking (RS) excitatory neurons, showing spike frequency adaptation, and the fast-spiking
(FS) inhibitory neurons. This mean-field model can reproduce the propagating waves in V1, due to horizontal
interactions, as shown previously using IF networks. This mean-field model also reproduced the suppressive
interactions between propagating waves. The mechanism of suppression was based on the preferential recruit-
ment of inhibitory cells over excitatory cells by afferent activity, which acted through the conductance-based
shunting effect of the two waves onto one another. The suppression was negligible in networks with identical
models for excitatory and inhibitory cells (such as IF networks). This suggests that the suppressive effect is a
general phenomenon due to the higher excitability of inhibitory neurons in cortex, in line with previous models
(Ozeki et al., Neuron 2009).

Work done in collaboration with Yann Zerlaut (UNIC) for modeling, Sandrine Chemla and Frederic Chavane
(CNRS, Marseille) for in vivo experiments. Supported by CNRS and the European Commission (Human Brain
Project).
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Mitsuo Kawato ATR Computational Neuroscience Laboratories,
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

K4 — Dynamics and Biomarkers of Mental Disorders

Current diagnoses of mental disorders are made in a categorical way, as exemplified by DSM-5, but many
difficulties have been encountered in such categorical regimes: the high percentage of comorbidities, usage
of the same drug for multiple disorders, the lack of any validated animal model, and the situation where no
epoch-making drug has been developed in the past 30 years. NIMH started RDoC (research domain criterion) to
overcome these problems [1], and some successful results have been obtained, including common genetic risk
loci [2] and common neuroanatomical changes for multiple disorders [3] as well as psychosis biotypes [4].

In contrast to the currently dominant molecular biology approach, which basically assumes one-to-one mapping
between genes and disorders, | postulate the following dynamics-based view of psychiatric disorders. Our brain
is a nonlinear dynamical system that can generate spontaneous spatiotemporal activities. The dynamical system
is characterized by multiple stable attractors, only one of which corresponds to a healthy or typically developed
state. The others are pathological states.

The most promising research approach within the above dynamical view is to combine resting-state functional
magnetic resonance imaging, machine learning, big data, and sophisticated neurofeedback. Yahata et al. devel-
oped an ASD biomarker using only 16/9730 functional connections, and it did not generalize to MDD or ADHD
but moderately to schizophrenia [5]. Yamashita’s regression model of working memory ability from functional
connections [6] generalized to schizophrenia and reproduced the severity of working-memory deficits of four
psychiatric disorders (in preparation).

With the further development of machine learning algorithms and accumulation of reliable datasets, we hope
to obtain a comprehensive landscape of many psychiatric and neurodevelopmental disorders. Guided by this
full-spectrum structure, a tailor-made neurofeedback therapy should be optimized for each patient [7].
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Contributed Talks

F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-
compartment models of oriens-lacunosum/moleculare hippocampal interneurons

Vladislav Sekulic'2*, Frances Skinner!-3:2

"Krembil Research Institute, University Health Network, Toronto, Ontario, Canada, M5T 258
2Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
3Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada, M5T 258

The theta rhythm (4-12Hz) is a prominent network oscillation observed in the mammalian hippocampus and
is correlated with spatial navigation and mnemonic processing. Inhibitory interneurons of the hippocampus fire
action potentials at specific phases of the theta rhythm, pointing to distinct functional roles of interneurons in
shaping this rhythmic activity. One hippocampal interneuron type, the oriens-lacunosum/moleculare (O-LM) cell,
provides direct feedback inhibition and regulation of pyramidal cell activity in the CA1 region. O-LM cells ex-
press the hyperpolarization-activated, mixed-cation current (I;) and, in vitro, demonstrate spontaneous firing
at theta that is impaired upon blockade of I;,. Work using dynamic clamp has shown that in the presence of
frequency-modulated artificial synaptic inputs, O-LM cells exhibit a spiking resonance at theta frequencies that
is not dependent on I, [1]. However, due to the somatic injection limitation of dynamic clamp, the study could
not examine the potential contributions of putative dendritic I;, or the integration of dendritically-located synaptic
inputs. To overcome this, we have used a database of previously developed multi-compartment computational
models of O-LM cells [2]. We situated our OLM cell models in an in vivo-like context by injecting Poisson-based
synaptic background activities throughout their dendritic arbors. Excitatory and inhibitory synaptic weights were
tuned to produce similar baseline activity prior to modulation of the inhibitory synaptic process at various fre-
quencies (2-30Hz). We found that models with dendritic inputs expressed enhanced resonant firing at theta
frequencies compared to models with somatic inputs. We then performed detailed analyses on the outputs of
the models with dendritic inputs to further elucidate these results with respect to I, distributions. The ability of
the models to be recruited at the modulated input frequencies was quantified using the rotation number, or av-
erage number of spikes across all input cycles. Models with somatodendritic I;, were recruited at >50% of the
input cycles for a wider range of theta frequencies (3-9Hz) compared to models with somatic I, only (3-4Hz).
Models with somatodendritic I;, also exhibited a wider range of theta frequencies for which phase-locked output
(vector strength>0.75) was observed (4-12Hz), compared to models with somatic I;, (3-5Hz). Finally, the phase
of firing of models with somatodendritic I;, given 8-10Hz modulated input was delayed 180-230° relative to the
time of release from inhibitory synaptic input. O-LM cells receive phasic inhibitory inputs at theta frequencies
from a subpopulation of parvalbumin-positive GABAergic interneurons in the medial septum (MS) timed to the
peak of hippocampal theta, as measured in the stratum pyramidale layer [3]. Furthermore, O-LM cells fire at the
trough of hippocampal pyramidal layer theta in vivo [4], an approximate 180° phase delay from the MS inputs,
corresponding to the phase delay in our models with somatodendritic I;,. Our results suggest that, given dendritic
synaptic inputs, O-LM cells require somatodendritic I;, channel expression to be precisely recruited during the
trough of hippocampal theta activity. Our strategy of leveraging model databases that encompass experimen-
tal cell type-specificity and variability allowed us to reveal critical biophysical factors that contribute to neuronal
function within in vivo-like contexts.
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F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells
and the whole brains

Daniel K Wojcik'*, Chaitanya Chintaluri', Dorottya Cserpan?, and Zoltan Somogyvari?

"Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
2Department of Theory, Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest,
H-1121, Hungary

Extracellular recordings of electric potential, with a century old history, remain a popular tool for investigations of
brain activity on all scales, from single neurons, through populations, to the whole brains, in animals and humans,
in vitro and in vivo [1]. The specific information available in the recording depends on the physical settings of the
system (brain+electrode). Smaller electrodes are usually more selective and are used to capture local information
(spikes from single cells or LFP from populations) while larger electrodes are used for subdural recordings (on
the cortex, ECoG), on the scalp (EEG) but also as depth electrodes in humans (called SEEG). The advantages of
extracellular electric potential are the ease of recording and its stability. lts problem is interpretation: since electric
field is long range one can observe neural activity several millimeters from its source [2-4]. As a consequence
every recording reflects activity of many cells, populations and regions, depending on which level we focus.
One way to overcome this problem is to reconstruct the distribution of current sources (CSD) underlying the
measurement [5], typically done to identify activity on systems level from multiple LFP on regular grids [6].

We recently proposed a kernel-based method of CSD estimation from multiple LFP recordings from arbitrarily
placed probes (i.e. not necessarily on a grid) which we called kernel Current Source Density method (kCSD)
[7]- In this overview we present the original proposition as well as two recent developments, skCSD (single cell
kCSD) and kESI (kernel Electrophysiological Source Imaging). skCSD assumes that we know which part of
the recorded signal comes from a given cell and we have access to the morphology of the cell. This could be
achieved by patching a cell, driving it externally while recording the potential on a multielectrode array, injecting
a dye, and reconstructing the morphology. In this case we know that the sources must be located on the cell
and this information can be successfully used in estimation. In kESI we consider simultaneous recordings with
subdural ECoG (strip and grid electrodes) and with depth electrodes (SEEG). Such recordings are taken on
some epileptic patients prepared for surgical removal of epileptogenic zone. When MR scan of the patient head
is taken and the positions of the electrodes are known as well as the brain’s shape, the idea of kCSD can be
used to bound the possible distribution of sources facilitating localization of the foci.
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F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in cir-
cadian clocks.

Jae Kyoung Kim'*, Zachary Kilpatrick?, Matthew Bennett®, and Kresimir Josic®*

" Department of Mathematical Sciences, KAIST, Daejoen 34141, Republic of Korea,

2Department of Mathematics, University of Houston, Houston, Texas 77004, USA,

Department of Biochemistry & Cell Biology and Institute of Biosciences and Bioengineering, Rice University, Hous-
ton, Texas 77005, USA,

“Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, USA.

In mammals, circadian (~24hr) rhythms are mainly regulated by a master circadian clock located in the suprachi-
asmatic nucleus (SCN) [1]. The SCN consists of 20,000 neurons, each of which generates own rhythms via
intracellular transcriptional negative feedback loop involving PER-CRY and BMAL1-CLOCK. These individual
rhythms of each neuron are synchronized through intercellular coupling via neurotransmitters including VIP [2].
In this talk, | will discuss that the synchronized periods via coupling signal strongly depend on the mechanism of
intracellular transcription repression [3-4]. Specifically, using mathematical modeling and phase response curve
analysis, we find that the synchronized period of SCN stays close to the population mean of cells’ intrinsic pe-
riods (~24hr) if transcriptional repression occurs via protein sequestration. However, the synchronized period is
far from the population mean when repression occurs via Hill-type regulation (e.g. phosphorylation-based repres-
sion). These results reveal the novel relationship between two major functions of the SCN-intracellular rhythm
generation and intercellular synchronization of rhythms. Furthermore, this relationship provides an explanation
for why the protein sequestration is commonly used in circadian clocks of multicellular organisms, which have a
coupled master clock, but not in unicellular organisms [4].
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O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern genera-
tors

Irene Elices'*, David Arroyo', Rafael Levi'?, Francisco B. Rodriguez', and Pablo Varona'

" Grupo de Neurocomputacién Biolégica, Dpto. de Ingenieria Informatica, Escuela Politécnica Superior, Universidad
Auténoma de Madrid, Spain
2Department of Biological Sciences, University of Southern California, USA

Found in all nervous systems, central pattern generators (CPGs) are neural circuits that produce flexible rhyth-
mic motor patterns. Their robust and highly coordinated spatio-temporal activity is generated in the absence
of rhythmic input. Several invertebrate CPGs are among the best known neural circuits, as their neurons and
connections have been identified and mapped. The crustacean pyloric CPG is one of these flagship neural net-
works [1, 2]. Experimental and computational studies of CPGs typically examine their rhythmic output in periodic
spiking-bursting regimes. Aiming to understand the fast rhythm negotiation of CPG neurons, here we present
experimental and theoretical analyses of the pyloric CPG activity in situations where irregular yet coordinated
rhythms are produced. In particular, we focus our study in the context of two sources of rhythm irregularity: in-
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trinsic damage in the preparation, and irregularity induced by ethanol. The analysis of non-periodic regimes can
unveil important properties of the robust dynamics controlling rhythm coordination in this system.

Adult male and female shore crabs (Carcinus maenas) were used for the experimental recordings. The isolated
stomatrogastric ganglion was kept in Carcinus maenas saline. Membrane potentials were recorded intracellu-
larly from the LP and PD cells, two mutually inhibitory neurons that form a half-center oscillator in the pyloric
CPG. Extracellular electrodes allowed monitoring the overall CPG rhythm. Conductance-based models of the
pyloric CPG neurons and their associated graded synapses as described in [3, 4] were also used in this dual
experimental and theoretical study.

Irregularity and coordination of the CPG rhythms were analyzed using measures characterizing the cells’ instan-
taneous waveform, period, duty cycle, plateau, hyperpolarization and temporal structure of the spiking activity,
as well as measures describing instantaneous phases among neurons in the irregular rhythms and their variabil-
ity. Our results illustrate the strong robustness of the circuit to keep LP/PD phase relationships in intrinsic and
induced irregularity conditions while allowing a large variety of burst waveforms, durations and hyperpolarization
periods in these neurons. In spite of being electrically coupled to the pacemaker cell of the circuit, the PD neu-
rons showed a wide flexibility to participate with larger burst durations in the CPG rhythm (and larger increase
in variability), while the LP neuron was more restricted in sustaining long bursts in the conditions analyzed. The
conductance-based models were used to explain the role of asymmetry in the dynamics of the neurons and
synapses to shape the irregular activity observed experimentally. Taking into account the overall experimental
and model analyses, we discuss the presence of preserved relationships in the non-periodic but coordinated
bursting activity of the pyloric CPG, and their role in the fast rhythm negotiating properties of this circuit.
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Particular behaviors are associated with different spatio-temporal patterns of cortical EEG oscillations. A recent
study suggests that the cortically-projecting, parvalbumin-positive (PV+) inhibitory neurons in the basal forebrain
(BF) play an important role in the state-dependent control of cortical oscillations, especially 40 Hz gamma oscil-
lations [1]. However, the cortical topography of the gamma oscillations which are controlled by BF PV+ neurons
and their relationship to behavior are unknown. Thus, in this study, we investigated the spatio-temporal patterns
and the functional role of the cortical oscillations induced or entrained by BF PV+ neurons by combining opto-
genetic stimulation of BF PV+ neurons with high-density EEG [2, 3] in channelrhodopsin-2 (ChR2) transduced
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PV-cre mice. First, we recorded the spatio-temporal responses in the cortex with respect to the stimulation of BF
PV+ neurons at various frequencies. The topographic response patterns were distinctively different depending
on the stimulation frequencies, and most importantly, stimulation of BF PV+ neurons at 40 Hz (gamma band
frequency) induced a preferential enhancement of gamma band oscillations in prefrontal cortex (PFC) with a
statistically significant increase in intracortical connectivity within PFC. Second, optogenetic stimulation of BF
PV+ neurons was applied while the mice were exposed to auditory stimuli (AS) at 40 Hz. The time delay be-
tween optogenetic stimulation and AS was tested and the phase response to the AS was characterized. We
found that the phase responses to the click sound in PFC were modulated by the optogenetic stimulation of BF
PV+ neurons. More specifically, the advanced activation of BF PV+ neurons by /2 (6.25 ms) with respect to
AS sharpened the phase response to AS in PFC, while the anti-phasic activation (w, 12.5 ms) blunted the phase
response. Interestingly, like PFC, the primary auditory cortex (A1) also showed sharpened phase response for
the =/2 advanced optogenetic BF PV+ neuron activation during AS. Considering that no direct influence of BF
PV+ neurons on A1 was apparent in the response to stimulation of BF PV+ neurons alone, the sharpened phase
response curve of A1 suggests a top-down influence of the PFC. This result implies that the BF PV+ neurons
may participate in regulating the top-down influence that PFC exerts on primary sensory cortices during attentive
behaviors, and supports the idea that the modulating activities of BF PV+ neurons might be a potential target for
restoring top-down cognitive functions as well as abnormal frontal gamma oscillations associated with psychiatric
disorders.
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With neuromechanistic modelling and psychoacoustic experiments we study the perceptual dynamics of auditory
streaming (cocktail party problem). The stimulus is a sequence of two interleaved tones, A and B in a repeating
triplet pattern: ABA_ABA_ (’_’ is a silent gap). Initially, subjects hear a single integrated pattern, but after some
seconds they hear segregated A_A_A_and B B__ streams (build-up of streaming segregation). For long
presentations, build-up is followed by irregular alternations between integrated and segregated (auditory bista-
bility). We recently presented [1] the first neuromechanistic model of auditory bistability; it incorporates common
competition mechanisms of mutual inhibition, slow adaptation and noise [2]. Our competition network is formu-
lated to reside downstream of primary auditory cortex (A1). Neural responses in macaque A1 to triplet sequences
[3] encode stimulus features and provide the inputs to our network (Fig 1A). In our model recurrent excitation with
an NMDA-like timescale links responses across gaps between tones and between triplets. It captures the dynam-
ics of perceptual alternations and the stimulus feature dependence of percept durations. To account for build-up
we incorporate early adaptation of A1 responses [3] (Fig 1B, upper). Early responses in A1 are broadly tuned
and do not reflect the frequency difference between the tones; later responses show a clear tonotopic depen-
dence. This adaptation biases the initial percept towards integration, but occurs faster (~0.5s) than the gradual
build-up process (~5-10s). The low initial probability of segregation gradually builds up to the stable probability
of later bistable alternations (Fig 1B, lower). During build-up, a pause in presentation may cause partial reset
to integrated [4]. Our extended model shows this behavior assuming that after a pause A1 responses recover
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on the timescale of early adaptation. Moreover, the modeling results agree with our psychoacoustic experiments
(compare filled and open circles in Fig 1B, lower).

Conclusions

For the first time, we offer an explanation of the discrepancy in the timescales of early A1 responses and the
more gradual build-up process. Recovery of A1 responses can explain resetting for stimulus pauses. Our model
offers, to date, the most complete account of the early and late dynamics for auditory streaming in the triplet
paradigm.
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Figure 1: A. Model schematic: tone inputs I, and Ip elicit pulsatile responses in A1, which are pooled as
inputs to a three-population competition network. Central unit AB encodes integrated, peripheral units A and B
encode segregated. Mutual inhibition between units and recurrent excitation are incorporated with adaptation and
noise. B. A1 inputs show early initial adaptation, also if a pause is present. Build-up function shows proportion
segregated increasing over time, here shown for three tone-frequency differences, DF, with no pause (dashed) or
with a pause (solid curves). Time-snapshots from model (filled circles) agree with data (empty circles with SEM
error bars, N=8).
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Auditory evoked fields (AEFs) observed in MEG experiments systematically present a transient deflection known
as the N100m, elicited around 100ms after the tone onset in the antero-lateral Heschl's Gyrus. The exact
N100m’s latency is correlated with the perceived pitch of a wide range of stimulus [1, 2], suggesting that the
transient component reflects the processing of pitch in auditory cortex. However, the biophysical substrate of
such precise relationship remains an enigma. Existing models of pitch, focused on perceptual phenomena, did
not explain the mechanism generating cortical evoked fields during pitch processing in biophysical detail. In this
work, we introduce a model of interacting neural ensembles describing, for the first time to our knowledge, how
cortical pitch processing gives rise to observed human neuromagnetic responses and why its latency strongly
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correlates with pitch. To provide a realistic cortical input, we used a recent model of the auditory periphery and
realistic subcortical processing stages. Subcortical processing was based on a delay-and-multiply operation car-
ried out in cochlear nucleus and inferior colliculus [3], resulting in realistic patterns of neural activation in response
to the stimulus periodicities. Subcortical activation is transformed into a tonotopic receptive-field-like representa-
tion [4] by a novel cortical circuit composed by functional blocks characterised by a best frequency. Each block
consist of an excitatory and an inhibitory population, modelled using mean-field approximations [5]. Blocks in-
teract with each other through local AMPA- and NMDA- driven excitation and GABA-driven global inhibition [5].
The excitation-inhibition competition of the cortical model describes a general pitch processing mechanism that
explains the N100m deflection as a transient state in the cortical dynamics. The deflection is rapidly triggered by
arise in the activity elicited by the subcortical input, peaks after the inhibition overcomes the input, and stabilises
when model dynamics reach equilibrium, around 100ms after onset. As a direct consequence of the connectivity
structure among blocks, the time necessary for the system to reach equilibrium depends on the encoded pitch
of the tone. The model quantitatively predicts observed latencies of the N100m in agreement with available em-
pirical data [1, 2] in a series of stimuli (see Figure 1), suggesting that the mechanism potentially accounts for the
N100m dynamics.
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Figure 1: N100m predictions in comparison with available data [1, 2] for a range of pure tones (A) and HCTs (B).
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Retinal implants can restore vision to patients suffering photoreceptor loss by stimulating surviving retinal gan-
glion cells (RGCs) via an array of microelectrodes implanted within the eye [1]. However, the acuity offered
by existing devices is low, limiting the benefits to patients. Improvements may come by increasing the num-
ber of electrodes in new devices and providing patterned vision, which necessitates stimulation using multiple
electrodes simultaneously. However, simultaneous stimulation poses a number of problems due to cross-talk
between electrodes and uncertainty regarding the resulting activation pattern. Here, we present a model and
methods for estimating the responses of RGCs to simultaneous electrical stimulation. Whole cell in vitro patch
clamp recordings were obtained from 25 RGCs with various morphological types in rat retina. The retinae were
placed onto an array of 20 stimulating electrodes. Biphasic current pulses with 500 s phase duration and 50
us interphase gap were applied simultaneously to all electrodes at a frequency of 10 Hz, with the amplitude of
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current on each electrode sampled independently from a Gaussian distribution. A linear-nonlinear model was
fit to the responses of each RGC using spike-triggered covariance analyses on 80% of the recorded data. The
analysis revealed a single significant principle component corresponding to the electrical receptive field for each
cell, with the second largest principle component having negligible effect on the neural response (Fig. 1a). This
indicates that interactions between electrodes are approximately linear in their influence on the cells’ responses.
Furthermore, the spike-triggered ensemble showed two clusters (red and blue in Fig 1a) corresponding to stim-
ulation that had a net effect that was either anodic first or cathodic first. The electrical receptive fields for both
anodic first and cathodic first stimulation were highly similar (Fig. 1b). They consisted of a small number (1—4)
of electrodes that were close to the cell body (green dot). The remaining 20% of data were used to validate the
model. The average model prediction root-mean-square error was 7% over the 25 cells. The accuracy of the

model indicates that the linear-nonlinear model is appropriate to describe the responses of RGCs to electrical
stimulation.
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Figure 1: A. Spike triggered covariance showing the full set of stimuli (black dots) projected onto the first two
principle components. Stimuli causing a spike formed two clusters: net cathodic first pulses (blue) and net anodic

first pulse (red). B. Electrical receptive fields superimposed on the electrode array are shown for the cathodic
first (blue) and anodic first clusters (red).
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Linking sensory coding and behavior is a fundamental question in neuroscience. We have addressed this issue
in behaving monkey visual cortex (areas V1 and V4) while animals were trained to perform a visual discrimination
task in which two successive images were either rotated with respect to each other or were the same. We hypoth-
esized that the animal’s performance in the visual discrimination task depends on the quality of stimulus coding
in visual cortex. We tested this hypothesis by investigating the functional relevance of neuronal correlations in
areas V1 and V4 in relation to behavioral performance. We measured two types of correlations: noise (spike
count) correlations and correlations in spike timing. Surprisingly, both methods showed that correct responses
are associated with significantly higher correlations in V4, but not V1, during the delay period between the two
stimuli. This suggests that pair-wise interactions during the spontaneous activity preceding the arrival of the
stimulus sets the stage for subsequent stimulus processing and importantly influences behavioral performance.

Experiments were conducted in 2 adult monkeys that were previously trained for the task. After 300 ms of
fixation, the target stimulus, consisting of a naturalistic stimulus, is shown for 300 ms, and after a random delay
period (500-1200 ms), a test stimulus is shown for 300 ms. The test can either be identical to the target stimulus
(match) or rotated with respect to the target (non-match). Monkey responded by pressing a button and was
rewarded for a correct response with fruit juice. Two linear arrays with 16 recording channels each were used
to record population activity in areas V1 and V4. The difficulty of the task is calibrated individually to have 70%
correct responses on average. The analysis is conducted on non-match condition, comparing activity in trials
with correct responses with trials where the monkey responded incorrectly. Noise correlations were assessed
as pair-wise correlations of spike counts (method 1) and of spike timing (method 2). For method 1, z-scores of
spike counts of binned spike trains are computed in individual trials. r_sc is computed as Pearson correlation
coefficient of z-scores in all available trials, balanced across correct/incorrect condition. For the method 2, cross-
correlograms were computed, from which the cross-correlograms from shuffled trials are subtracted. Resulting
function was summed around zero lag and normalized with sum of autocorrelograms [1].

While firing rates of single units or of the population did not significantly change for correct and incorrect re-
sponses, noise correlations during the delay period were significantly higher in V4 pairs, computed with both
r_sc method (p=0.0005 in monkey 1, sign-rank test) and with r_ccg method (p=0.0001 and p= 0.0280 in monkey
1 and 2, respectively, 50 ms integration window). This result is robust to changes in the length of the bin (method
1) and to the length of the summation window (method 2). In agreement with [2], we confirm the importance of
spontaneous activity preceding the stimulus on performance and suggest that higher correlations in V4 might be
beneficial for successful read-out and reliable transmission of the information downstream.
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Gain modulation is a brain-wide principle of neuronal computation that describes how neurons integrate inputs
from different presynaptic sources. A gain change is a multiplicative operation that is defined as a change in the
sensitivity (or slope of the response amplitude) of a neuron to one set of inputs (driving input) which results from
the activity of a second set of inputs (modulatory input) [1, 2].

Different cellular and network mechanisms have been proposed to underlie gain modulation [2, 3, 4]. It is well
established that input features such as synaptic noise and plasticity can contribute to multiplicative gain changes
[2, 3, 4]. However, the effect of neuronal morphology on gain modulation is relatively unexplored. Neuronal
inputs to the soma and dendrites are integrated in a different manner: whilst dendritic saturation can introduce a
strong non-linear relationship between dendritic excitation and somatic depolarization, the relationship between
somatic excitation and depolarization is more linear. The non-linear integration of dendritic inputs can enhance
the multiplicative effect of shunting inhibition in the presence of noise [3].

Neurons in the cerebellar nuclei (CN) provide the main gateway from the cerebellum to the rest of the brain.
Understanding how inhibitory inputs from cerebellar Purkinje cells interact with excitatory inputs from mossy
fibres to control output from the CN is at the center of understanding cerebellar computation. In the present
study, we investigated the effect of inhibitory modulatory input on CN neuronal output when the excitatory driving
input was delivered at different locations in the CN neuron. We used a morphologically realistic conductance
based CN neuron model [5] and examined the change in output gain in the presence of distributed inhibitory
input under two conditions: (a) when the excitatory input was confined to one compartment (the soma or a
dendritic compartment) and, (b), when the excitatory input was distributed across particular dendritic regions at
different distances from the soma. For both of these conditions, our results show that the arithmetic operation
performed by inhibitory synaptic input depends on the location of the excitatory synaptic input. In the presence
of distal dendritic excitatory inputs, the inhibitory input has a multiplicative effect on the CN neuronal output. In
contrast, excitatory inputs at the soma or proximal dendrites close to the soma undergo additive operations in the
presence of inhibitory input. Moreover, the amount of the multiplicative gain change correlates with the distance
of the excitatory inputs from the soma, with increasing distances from the soma resulting in increased gain
changes and decreased additive shifts along the input axis. These results indicate that the location of synaptic
inputs affects in a systematic way whether the input undergoes a multiplicative or additive operation.
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Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic con-
straints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained
using the Na™-counting method [1, 2], which seriously limits accurate assessment of metabolic cost of ionic
currents that underlie AP generation. Moreover, the effects of axonal geometry and ion channel distribution on
energy consumption related to AP propagation have not been systematically investigated. To address these
issues, we return to the cable theory [3] that underlies our HH-type cortical axon model [4], which was con-
structed based on experimental measurements. Based on the cable equation that describes how ion currents
flow along the cable as well as analysis of the electrochemical energy in the equivalent circuit, we derived the
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electrochemical energy function for the cable model,
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where g%2* (in a range of 50 to 650 mScm2), ¢g7** (5 to 100 mScm2), and g;, = 0.033 mS/cm2 are the maxi-
mal sodium, maximal potassium, and leak conductance per unit membrane area, respectively; and Vy, = 60,
Vk = =90, VL, = —70 mV are the reversal potentials of the sodium, potassium, and leak channels, respec-
tively. The gate variables m, h, and n are dimensionless activation and inactivation variables, which describe the
activation and inactivation processes of the sodium and potassium channels [4]. This equation describes the
AP-related energy consumption rate per unit membrane area (cm?s) at any axonal distance and any time. The
individual terms on the right-hand side of the equation represent the contributions of the sodium, potassium, leak,
and axial currents, respectively. Then we employed the cable energy function to calculate energy consumption
for unbranched axons and axons with several degrees of branching (branching level, BL). Calculations based
on this function distinguish between the contributions of each item toward total energy consumption. Our analyt-
ical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or
nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates
energy cost in the cable model by 20%-70%. AP propagation along axons that differ in length may require over
15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary
greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states.
We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of
spatial volume exhibits a 3/4 power law relationship.
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Modeling neuronal systems involves incorporating the two layers: a static map of neural connections (connec-
tome), and biophysical processes that describe neural responses and interactions. Such a model is called the
‘dynome’ of a neuronal system as it integrates a dynamical system with the static connectome. Being closer
to reproducing the activity of a neuronal system, investigation of the dynome has more potential to reveal neu-
ronal pathways of the network than the static connectome [1]. However, since the two layers of the dynome are
considered simultaneously, novel tools have to be developed for the dynome studies. Here we present a visual-
ization methodology, called ‘interactome’, that allows to explore the dynome of a neuronal system interactively
and in real-time, by viewing the dynamics overlaid on a graph representation of the connectome. We apply our
methodology to the nervous system of Caenorhabditis Elegans (C. elegans) worm, which connectome is almost
fully resolved [2], and a computational model of neural dynamics and interactions (gap and synaptic) based on
biophysical experimental findings was recently introduced [3]. Integrated together, C. elegans dynome defines
a unique set of neural dynamics of the worm. To visualize the dynome, we propose a dynamic force-directed
graph layout of the connectome. The layout is implemented using D3 visualization platform [4], and is designed
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to communicate with an integrator of the dynome. The two-way communication protocol between the layout and
the integrator allows for stimulating (injecting current) into any subset of neurons at any time point (Fig 1B). It
also allows for simultaneously viewing the response of the network on top of the layout visualized by resizing
graph nodes (neurons) according to their voltage. In addition, we support structural changes in the connectome,
such as ablation of neurons and connections. Our visualization and communication protocols thereby display
the stimulated network in an interactive manner and permit to explore different regimes that the stimulations
induce. Indeed, with the interactome we are able to recreate various experimental scenarios, such as stimulation
of forward crawling (PLMAVB neurons andor ablation of AVB) and show that its visualization assists in identifying
patterns of neurons in the stimulated network. As connectomes and dynomes of additional neuronal systems
are being resolved, the interactome will enable exploring their functionality and inference to its underlying neural
pathways [5].
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Figure 1: A. Visualization of C. Elegans dynome B. Communication diagram between the dynome and the layout
C. Snapshots of visualization of C. elegans during the PLMAVB excitations (forward crawling).
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Objectively evaluating and selecting computational models of biological neurons is an ongoing challenge in the
field. Models vary in morphological detail, channel mechanisms, and synaptic transmission implementations.
We present the results of an automated method for evaluating computational models against property values
obtained from published cell electrophysiology studies. Seven published deterministic models of olfactory bulb
mitral cells were selected from ModelDB [1] and simulated using NEURON'’s Python interface [2]. Passive and
spike properties in response to step current stimulation pulses were computed using the NeuronUnit [3] package
and compared to their respective, experimentally obtained means of olfactory bulb mitral cell properties found
in the NeuroElectro database [4]. Results reveal that across all models, the resting potential and input resis-
tance property means deviated the most from their experimentally measured means (R;pp.: t-test p=0.02, V,.cs
Wilcoxon-test p=0.01). The time constant, spike half-width, spike amplitude, and spike threshold properties, in
the order of decreasing average deviation, matched well with experimental data (p > 0.05) (Figure 1 Top).

In three models, the property deviations were, on average, outside the 95% ClI of the experimental means (Figure
1 Bottom), but these averages were not significant (t-test p > 0.05). All other models were within the 95% Cl,
while the model of Chen et. al. had the lowest deviation [5].

Overall, the majority of these olfactory bulb mitral cell models display some properties that are not significantly
different from their experimental means. However, the resting potential and input resistance properties signifi-
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cantly differ from the experimental values. We demonstrate that NeuronUnit provides an objective method for
evaluating the fithess of computational neuroscience cell models against publicly available data.
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Figure 1: The average deviations of models and cell electrophysiology properties as measured in multiples
of the 95% CI bounds of experimental data means. Dashed line represents 1 Cl bound threshold. Top rows
show average deviations across all models for each cell property. Bottom rows show deviations across all cell
properties for each model.

Acknowledgements
The work of JB, RG, and SMC was supported in part by R0O1TMH1006674 from the National Institutes of Health.

References

[1] Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM: ModelDB: a database to support computa-
tional neuroscience. Journal of Computational Neuroscience 2004, 17(1):7-11.

[2] Hines M, Davison AP, Muller E: NEURON and Python. Frontiers in Neuroinformatics 2009, 3:1.

[3] Omar C, Aldrich J, Gerkin RC: Collaborative infrastructure for test-driven scientific model validation. /n:
Companion Proceedings of the 36th International Conference on Software Engineering 2014 ACM 2014: 524-
527.

[4] Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC: NeuroElectro: a window to the world’s neuron
electrophysiology data. Frontiers in Neuroinformatics 2014, 8.

[5] Chen WR, Shen GY, Shepherd GM, Hines ML, Midtgaard J: Multiple modes of action potential initiation
and propagation in mitral cell primary dendrite. Journal of Neurophysiology 2002, 88(5):2755-2764.

O11 Cooperation and competition of gamma oscillation mechanisms
Atthaphon Viriyopase'?3*, Raoul-Martin Memmesheimer*'-3, and Stan Gielen'-?

Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen (Medical Centre), The Nether-
lands.

2Department for Biophysics, Faculty of Science, Radboud University Nijmegen, The Netherlands

3Department for Neuroinformatics, Faculty of Science, Radboud University Nijmegen, The Netherlands

“Center for Theoretical Neuroscience, Columbia University, New York, USA

Neuronal oscillations in the gamma band (30—-80 Hz) have been found in many cortical areas and have been
associated to various sensory, motor, and cognitive tasks [1]. The two major mechanisms that have been sug-
gested to underlie gamma oscillations [2] are “ING” (InterNeuronal Gamma), which is related to tonic excitation
of reciprocally coupled inhibitory interneurons (I-cells, [3]), and “PING” (Pyramidal-InterNeuron Gamma), which
is mediated by coupled populations of excitatory pyramidal cells (E-cells) and I-cells [4]. Gamma oscillations
generated by different mechanisms may serve different biological functions. Using computer simulations and
analytical methods, we therefore investigate which mechanism (ING or PING) will dominate the dynamics of a
network when ING and PING interact and how the dominant mechanism may switch.

We find that ING and PING oscillations compete: The mechanism generating the higher oscillation frequency
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“wins”, it determines the frequency of the network oscillation and suppresses the other mechanism. For networks
with type-I-phase-response-curve interneurons (cf. Figure 1D), the network oscillation frequency (green line
corresponding to the network topology given in Figure 1C) is equal to or slightly above the higher of the ING
(blue line) and PING (red line) frequencies in corresponding reduced networks that can generate only either of
them, see Figure 1A for an only ING-generating reduced network and 1B for an only PING-generating reduced
network. If the interneurons have type-1l phase response curve, it is in between, see Figure 1E. We explain our
computer simulation results by a theoretical model that allows a full theoretical analysis of the main results.

Our study suggests experimental approaches to decide whether oscillatory activity in networks of interacting
excitatory and inhibitory neurons is dominated by ING or PING oscillations and whether the participating in-
terneurons belong to the class | or Il. Consider as an example networks with type-| interneurons where the
external drive to the E-cells, Iy g, is kept constant while the external drive to the I-cells, Iy ;, is varied. For both
ING and PING dominated oscillations the frequency of the rhythm increases when I, ; increases (cf. Figure 1D).
Observing such an increase does therefore not allow to determine the underlying mechanism. However, the rate
of change of the frequency increase allows a distinction, as it increases for PING and decreases for ING (cf. Fig-
ure 1D). In networks with type-Il interneurons, the non-monotonic dependence near the ING-PING transition may
be a characteristic hallmark to detect the oscillation character (and the interneuron type): Decrease (increase) of
the frequency when increasing Iy z indicates ING (PING), cf. Figure 1E.

Some experimental evidence is in line with these predictions. For example, Craig and McBain [5] reported that
optogenetic silencing of pyramidal cells in CA3 of hippocampus, where the dominant in-vitro gamma oscillations
are PING driven, led to a significant increase in the peak frequency of the oscillations, as predicted by our results
(cf. the curves in Figure 1E at intermediate values of Iy g). Using step-opsins [6], results as in Figure 1D and 1E
could be obtained experimentally. This will allow a test of our results and predictions and may reveal how ING
and PING oscillations interact.
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A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the
mathematical and computational approaches used for its analysis. Most existing mathematical methods of the
LFP studies are based on braking the signal into a combination of simpler components, e.g., into sinusoidal
harmonics of Fourier analysis or into wavelets of the Wavelet Analysis. However, a common feature of all these
methods is that their prime components are presumed from the onset, and the goal of the subsequent analysis
reduces to identifying the combination that best reproduces the original signal.

We propose a fundamentally new method, based on a number of deep theorems of complex function theory, in
which the prime components of the signal are not presumed a priori, but discovered empirically [1]. Moreover,
the new method is more flexible and more sensitive to the signal’s structure than the standard Fourier method.
Applying this method reveals a fundamentally new structure in the hippocampal LFP signals in rats in mice.
In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set
of frequency modulated oscillatory processes, which we call “oscillons”. Since these structures are discovered
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Figure 1: Oscillations in full and reduced networks of reciprocally coupled pyramidal cells and interneurons. A.
and B. illustrate topologies of reduced networks that generate only “pure” ING or only “pure” PING, respectively,
while C. highlights the topology of a “full” network that could in principle generate either ING or PING oscillations
or mixtures of both. D, E. Frequency of pure ING-rhythm generated by the reduced network in (A) (blue line),
pure PING-rhythm generated by the reduced network in (B) (red line), and rhythms generated by the full network
in (C) (green line) as a function of mean current to I-cells I, ; and a function of mean current to E-cells I g,
respectively. (D) shows results for networks with type-l interneurons while (E) shows results for networks with
type-Il interneurons. Pyramidal cells are modeled as type-I Hodgkin-Huxley neurons.

empirically, we hypothesize that they may capture the signal’s actual physical structure, i.e., the pattern of syn-
chronous activity in neuronal ensembles. Proving this hypothesis will help enormously to advance a principal,
theoretical understanding of the neuronal synchronization mechanisms. We anticipate that it will reveal new in-
formation about the structure of the LFP and other biological oscillations, which should provide insights into the
underlying physiological phenomena and the organization of brains states that are currently poorly understood,
e.g., sleep and epilepsy.
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Many animals, including insects and humans, stabilize the visual image projected onto their retina by following
a rotating landscape with their head or eyes. This stabilization reflex, also called the optomotor response, can
pose a problem, however, when the animal intends to change its gaze. To resolve this paradox, von Holst and
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Mittelstaedt proposed that a copy of the motor command, or efference copy, could be routed into the visual
system to transiently silence this stabilization reflex when an animal changes its gaze [1]. Consistent with this
idea, we recently demonstrated that a single identified neuron associated with the optomotor response receives
silencing motor-related inputs during rapid flight turns, or saccades, in tethered, flying Drosophila [2].

Here, we expand on these results by comprehensively recording from a group of optomotor-mediating visual
neurons in the fly visual system: three horizontal system (HS) and six vertical system (VS) cellsA. We found that
the amplitude of motor-related inputs to each HS and VS cell correlates strongly with the strength of each cell’s
visual sensitivity to rotational motion stimuli around the primary turn axis, but not to the other axes (Figure 1).
These results support the idea that flies send rotation-axis-specific efference copies to the visual system during
saccades — silencing the stabilization reflex only for a specific axis, but leaving the others intact. This is important
because saccades consist of stereotyped banked turns, which involve body rotations around all three primary
axes of rotation. If the gaze stabilization system is impaired for only one of these axes, then the fly is expected
to attempt to maintain gaze stability, through a combination of head and body movements, for the other two. This
prediction is consistent with behavioral measurements of head and body kinematics during saccades in freely
flying blow flies [3]. Together, these studies provide an integrative model of how efference copies counteract a
specific aspect of visual feedback signals to tightly control the gaze stabilization system.
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Figure 1: The amplitudes of saccade-related potentials (SRPs) to HS and VS cells are strongly correlated with
each cell's visual sensitivity to rightward yaw motion stimuli. A. Experimental apparatus. B. Maximal-intensity
z-projections of the lobula plate to visualize HS- or VS-cell neurites that are marked by a GAL4 enhancer trap
line. C, D. The amplitude of saccade-related potentials (SRPs) were inversely correlated with visual responses,
when measured under rightward yaw motion stimuli, but not under clockwise roll motion stimuli. Each sample
point corresponds to each cell type. Error bars indicate SEM.
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Associative learning in the fruit fly olfactory system has been studied from the molecular to the behavior level
[1,2]. Fruit flies are able to associate conditional stimuli such as odor with unconditional aversive stimuli such
as electrical shocks, or appetitive stimuli such as sugar or water. The mushroom body in the fruit fly brain is
considered to be crucial for olfactory learning [1,2]. The behavioral experiments show that the learning can
not be explained simply by an additive Hebbian (i.e. correlation-based) learning rule. Instead, it depends on
the timing between the conditional and unconditional stimulus presentation. Yarali and colleagues suggested a
dynamic model on the molecular level to explain event timing in associative learning [3]. Here, we present new
experiments together with a simple phenomenological model for learning that shows that associative olfactory
learning in the fruit fly represents value learning that is incompatible with Hebbian learning.

In our model, the information of the conditional odor stimulus is conveyed by Kenyon cells from the projection
neurons to the mushroom output neurons; the information of the unconditional shock stimulus is represented
by dopaminergic neurons to the mushroom output neurons through direct or indirect pathways. The mushroom
body output neurons encode the internal value (v) of the odor (o) by synaptic weights (w) that conveys the odor
information, v = w - 0. The synaptic strength is updated according to the value learning rule, Aw =7 - (s — v) - 6,
where s represents the (internal) strength of the shock stimulus, 6 represents the synaptic odor trace, and n
is the learning rate. The value associated with the odor determines the probability of escaping from that odor.
This simple model reproduces the behavioral data and shows that olfactory conditioning in the fruit fly is in fact
value learning. In contrast to the prediction of Hebbian learning, the escape probability for repeated odor-shock
pairings is much lower than the escape probability for a single pairing with a correspondingly stronger shock.
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The local field potential (LFP) in the extracellular space (ECS) of the brain, is a standard measure of population
activity in neural tissue. Computational models that simulate the relationship between the LFP and its underlying
neurophysiological processes are commonly used in the interpretation such measurements. Standard methods,
such as volume conductor theory [1], assume that ionic diffusion in the ECS has negligible impact on the LFP.
This assumption could be challenged during endured periods of intense neural signalling, under which local
ion concentrations in the ECS can change by several millimolars. Such concentration changes are indeed often
accompanied by shifts in the ECS potential, which may be partially evoked by diffusive currents [2]. However,
it is hitherto unclear whether putative diffusion-generated potential shifts are too slow to be picked up in LFP
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recordings, which typically use electrode systems with cut-off frequencies at 0.1 Hz.

To explore possible effects of diffusion on the LFP, we developed a hybrid simulation framework: (1) The NEURON
simulator was used to compute the ionic output currents from a small population of cortical layer-5 pyramidal
neurons [3]. The neural model was tuned so that simulations over 100 seconds of biological time led to shifts
in ECS concentrations by a few millimolars, similar to what has been seen in experiments [2]. (2) In parallel, a
novel electrodiffusive simulation framework [4] was used to compute the resulting dynamics of the potential and
ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. To explore the

relative role of diffusion, we compared simulations where ECS diffusion was absent with simulations where ECS
diffusion was included.

Our key findings were: (i) ECS diffusion shifted the local potential by up to 0.2 mV. (ii) The power spectral density
(PSD) of the diffusion-evoked potential shifts followed a 1/ 2 power law. (iii) Diffusion effects dominated the PSD
of the ECS potential for frequencies up to 10 Hz (Figure 1). We conclude that for large, but physiologically

realistic ECS concentration gradients, diffusion could affect the ECS potential well within the frequency range
considered in recordings of the LFP.
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Figure 1: Power spectrum of ECS potential in a simulation including ECS diffusion (blue line) and a simulation
without ECS diffusion (red line). Units for frequency and power are Hz and mV?/Hz, respectively.
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016 Large-scale cortical models towards understanding relationship between brain structure abnor-
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Brain connectivity studies have revealed fundamental properties of normal brain network organization [1]. In
parallel, they have reported structural connectivity abnormalities in brain diseases such as Alzheimer’s disease
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(AD) [1, 2]. However, how these structural abnormalities affect information processing and cognitive functions
involved in brain diseases is still poorly understood. To deepen our understanding of this causal link, | developed
two large-scale cortical models with normal and abnormal structural connectivity of diffusion tensor imaging on
aging APOE-4 non-carriers and carriers in the USC Multimodal Connectivity Database [2, 3]. The possession
of the APOE-4 allele is one of the major risk factors in developing later AD, and it has known abnormalities in
structural connectivity characterized by lower network communication efficiency in terms of local interconnec-
tivity and balance of integration and interconnectivity [2]. The two cortical models share other parameters and
consist of 2.4 million spiking neurons and 4.8 billion synaptic connections. First, | demonstrate the biological
relevance of the models by confirming that they reproduce normal patterns of cortical spontaneous activities in
terms of the following distinctive properties observed in vivo [4]: low firing rates of individual neurons that approx-
imate log-normal distributions, irregular spike trains following a Poisson distribution, a network balance between
excitation and inhibition, and greater depolarization of the average membrane potentials. Next, to investigate
how the difference in structural connectivity affects cortical information processing, | compare cortical response
properties to an input during spontaneous activity between the cortical models. The results show that the cor-
tical model with the abnormal structural connectivity decreased the degree of cortical response as well as the
number of cortical regions responding to the input (Figure 1), suggesting that the structural connectivity abnor-
mality observed in APOE-4 carriers might reduce cortical information propagation and lead to negative effects in
information integration. Indeed, imaging studies support this suggestion by reporting structural abnormality with
lower network communication efficiency observed in the structural connectivity of both APOE-4 carriers and AD
patients [1, 2]. This computational approach allowing for manipulations and detailed analyses that are difficult or
impossible in human studies can help to provide a causal understanding of how cognitive deficits in patients with
brain diseases are associated with their underlying structural abnormalities.
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Figure 1: Responses to input to the left V1 in the two cortical models with normal/abnormal structural connectivity.
(A) Average firing rates. (B, C and D) Cortical regions and cortical areas that significantly responded to the input.
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017  Spatial coarse-graining the brain: Origin of minicolumns
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The seminal experiments of Mountcastle [1] over 60 years ago established the existence of cortical minicolumns:
vertical column-like arrays of approximately 80—120 neurons aligned perpendicular to the pial surface, penetrat-
ing all six cortical layers. Minicolumns have been proposed as the fundamental unit for cortical organisation.
Minicolumn formation is thought to rely on gene expression and thalamic activity, but exactly why neurons cluster
into columns of diameter 30—50um containing approximately 100 neurons is not known.
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In this presentation we describe a mechanism for the formation of minicolumns via gap-junction diffusion-
mediated coupling in a network of spiking neurons. We use our recently developed method of cortical “reblock-
ing” (spatial coarse-graining) [2] to derive neuronal dynamics equations at different spatial scales. We are able
to show that for sufficiently strong gap-junction coupling, there exists a minimum block size over which neural
activity is expected to be coherent. This coherence region has cross-sectional area of order (40-60 ;m?), con-
sistent with the areal extent of a minicolumn. Our scheme regrids a 2D continuum of spiking neurons using a
spatial rescaling theory, established in the 1980s, that systematically eliminates high-wave-number modes [3].
The rescaled neural equations describe the bulk dynamics of a larger block of neurons giving “true” (rather than
mean-field) population activity, encapsulating the inherent dynamics of a continuum of spiking neurons stimulated
by incoming signals from neighbors, and buffeted by ion-channel and synaptic noise.

Our method relies on a perturbative expansion. In order for this coarse-graining expansion to converge, we
require not only a sufficiently strong level of inhibitory gap-junction coupling, but also a sufficiently large blocking
ratio B. The latter condition establishes a lower bound for the smallest “cortical block”: the smallest group of
neurons that can respond to input as a collective and cooperative unit. We find that this minimum block-size ratio
lies between 4 and 6. In order to relate this 2D geometric result to the 3D extent of a 3-mme-thick layered cortex,
we project the cortex onto a horizontal surface and count the number of neurons contained within each [ x [ grid
micro-cell. Setting I ~ 10um and assuming an average of one interneuron per grid cell, a blocking ratio at the
mid-value B = 5 implies that the side-length of a coherent “macro-cell” will be L = Bl = 50 um containing ~25
inhibitory plus 100 excitatory neurons (assuming an i to e abundance ratio of 1:4) in cross-sectional area L?. Thus
the minicolumn volume will contain roughly 125 neurons. We argue that this is the smallest diffusively-coupled
population size that can support cooperative dynamics, providing a natural mechanism defining the functional
extent of a minicolumn.

We propose that minicolumns might form in the developing brain as follows: Inhibitory neurons migrate horizon-
tally from the ganglionic eminence to form a dense gap-junction coupled substrate that permeates all layers of the
cortex [4]. Progenitor excitatory cells ascend vertically from the ventricular zone, migrating through the inhibitory
substrate of the cortical plate. Thalamic input provides low-level stimulus to activate spiking activity throughout
the network. Inhibitory diffusive coupling allows a “coarse graining” such that neurons within a particular areal
extent respond collectively to the same input. The minimum block size prescribed by the coarse graining imposes
constraints on minicolumn geometry, leading to the spontaneous emergence of cylindrical columns of coherent
activity, each column centered on an ascending chain of excitatory neurons and separated from neighboring
chains by an annular surround of inhibition. This smallest aggregate is preferentially activated during early brain
development, and activity-based plasticity then leads to the formation of tangible structural columns.
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Visual cortical areas in the macaque are organized according to an anatomical hierarchy, which is defined by
specific patterns of anatomical projections in the feedforward and feedback directions [1, 2]. Recent macaque
studies also suggest that signals ascending through the visual hierarchy are associated with gamma rhythms,
and top-down signals with alpha/low beta rhythms [3, 4, 5]. It is not clear, however, how oscillations presumably
originating at local populations can give rise to such frequency-specific large-scale interactions in a mechanistic
way, or the role that anatomical projections patterns might have in this.

To address this question, we build a large-scale cortical network model with laminar structure, grounding our
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model on a recently obtained anatomical connectivity matrix with weighted directed inter-areal projections and
information about their laminar origin. The model involves several spatial scales —local or intra-laminar microcir-
cuit, inter-laminar circuits, inter-areal interactions and large-scale cortical network — and a wide range of temporal
scales — from slow alpha oscillations to gamma rhythms. At any given level, the model is constrained anatomically
and then tested against electrophysiological observations, which provides useful information on the mechanisms
modulating the oscillatory activity at different scales. As we ascend through the local to the inter-laminar and
inter-areal levels, the model allows us to explore the sensory-driven enhancement of gamma rhythms, the inter-
laminar phase-amplitude coupling, the relationship between alpha waves and local inhibition, and the frequency-
specific inter-areal interactions in the feedforward and feedback directions [3, 4], revealing a possible link with
the predictive coding framework.

When we embed our modeling framework into the anatomical connectivity matrix of 30 areas (which includes
novel areas not present in previous studies [2, 6]), the model gives insight into the mechanisms of large-scale
communication across the cortex, accounts for an anatomical and functional segregation of FF and FB inter-
actions, and predicts the emergence of functional hierarchies, which recent studies have found in macaque [4]
and human [5]. Interestingly, the functional hierarchies observed experimentally are highly dynamic, with areas
moving across the hierarchy depending on the behavioral context [4]. In this regard, our model provides a strong
prediction: we propose that these hierarchical jumps are triggered by laminar-specific modulations of input into
cortical areas, suggesting a strong link between hierarchy dynamics and context-dependent computations driven
by specific inputs.
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019 Information filtering by partial synchronous spikes in a neural population
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Synchronous firing of neurons is a prominent feature in many brain areas. Here, we are interested in the informa-
tion transmission by the synchronous spiking output of a noisy neuronal population, which receives a common
time-dependent sensory stimulus. Earlier experimental [1] and theoretical [2] work revealed that synchronous
spikes encode preferentially fast (high-frequency) components of the stimulus, i.e. synchrony can act as an in-
formation filter. In these studies a rather strict measure of synchrony was used: the entire population has to fire
within a short time window. Here, we generalize the definition of the synchronous output, for which only a certain
fraction ~ of the population needs to be active simultaneously — a setup that seems to be of more biological
relevance. We characterize the information transfer in dependence of this fraction and the population size, by the
spectral coherence function between the stimulus and the partial synchronous output. We present two different
analytical approaches to derive this frequency-resolved measure (one that is more suited for small population
sizes, while the second one is applicable to larger populations). We show that there is a critical synchrony frac-
tion, namely the probability at which a single neuron spikes within the predefined time window, which maximizes
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the information transmission of the synchronous output. At this value, the partial synchronous output acts as
a low-pass filter, whereas deviations from this critical fraction lead to a more and more pronounced band-pass
filtering effect. We confirm our analytical findings by numerical simulations for the leaky integrate-and-fire neu-
ron. We also show that these findings are supported by experimental recordungs of P-Units electroreceptors of
weakly electric fish, where the filtering effect of the synchronous output occurs in real neurons as well.
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020 Decoding context-dependent olfactory valence in Drosophila
Laurent Badel*, Kazumi Ohta, Yoshiko Tsuchimoto, and Hokto Kazama
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Many animals rely on olfactory cues to make perceptual decisions and navigate the environment. In the brain,
odorant molecules are sensed by olfactory receptor neurons (ORNSs), which convey olfactory information to the
central brain in the form of sequences of action potentials. In many organisms, axons of ORNs expressing the
same olfactory receptor converge to one or a few glomeruli in the first central region (the antennal lobe in insects
and the olfactory bulb in fish and mammals) where they make contact with their postsynaptic targets. Therefore,
each glomerulus can be considered as a processing unit that relays information from a specific type of receptor.
Because different odorants recruit different sets of glomeruli, and most glomeruli respond to a wide array of
odors, olfactory information at this stage of processing is contained in spatiotemporal patterns of glomerular
activity. How these patterns are decoded by the brain to guide odor-evoked behavior, however, remains largely
unknown.

In Drosophila, attraction and aversion to specific odors have been linked to the activation of one or a few glomeruli
(reviewed in [1]) in the antennal lobe (AL). These observations suggest a “labeled-line” coding strategy, in which
individual glomeruli convey signals of specific ethological relevance, and their activation triggers the execution
of hard-wired behavioral programs. However, because these studies used few odorants, and a small fraction
of glomeruli were tested, it is unclear how the results generalize to broader odor sets, and whether similar
conclusions hold for each of the 4™ 50 glomeruli of the fly AL. Moreover, how compound signals from multiple
glomeruli are integrated is poorly understood.

Here, we combine optical imaging, behavioral and statistical techniques to address these questions systemat-
ically. Using two-photon imaging, we monitor Ca?* activity in the AL in response to 84 odors. We next screen
behavioral responses to the same odorants. Comparing these data allows us to formulate a decoding model
describing how olfactory behavior is determined by glomerular activity patterns in a quantitative manner. We
find that a weighted sum of normalized glomerular responses recapitulates the observed behavior and predicts
responses to novel odors, suggesting that odor valence is not determined solely by the activity a few privileged
glomeruli. This conclusion is supported by genetic silencing and optogenetic activation of individual ORN types,
which are found to evoke modest biases in behavior in agreement with model predictions. Finally, we test the
model prediction that the relative valence of a pair of odors depends on the identity of other odors presented in
the same experiment. We find that the relative valence indeed changes, and may even switch, suggesting that
perceptual decisions can be modulated by the olfactory context. Surprisingly, our model correctly captured both
the direction and the magnitude of the observed changes. These results indicate that the valence of olfactory
stimuli is decoded from AL activity by pooling contributions over a large number of glomeruli, and highlight the
ability of the olfactory system to adapt to the statistics of its environment, similarly to the visual and auditory
systems.
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Workshops

Wi+ Methods of Information Theory in Computational Neuroscience
301A + 301B, Wednesday and Thursday, 9:00 — 16:30

Joseph T Lizier, The University of Sydney

Justin Dauwels, Nanyang Technological University

Taro Toyoizumi, RIKEN Brain Science Institute

Alexander G Dimitrov, Washington State University
Lubomir Kostal, Academy of Sciences of the Czech Republic

Methods originally developed in Information Theory have found wide applicability in computational neuroscience.
Beyond these original methods there is a need to develop novel tools and approaches that are driven by problems
arising in neuroscience.

A number of researchers in computational/systems neuroscience and in information/communication theory are
investigating problems of information representation and processing. While the goals are often the same, these
researchers bring different perspectives and points of view to a common set of neuroscience problems. Often
they participate in different fora and their interaction is limited.

The goal of the workshop is to bring some of these researchers together to discuss challenges posed by neuro-
science and to exchange ideas and present their latest work. The workshop is targeted towards computational
and systems neuroscientists with interest in methods of information theory as well as information/communication
theorists with interest in neuroscience.

Speakers: S
+ Lionel Barnett (University of Sussex)

» Demian Battaglia (Institute for Systems Neuroscience, Marseilles)

» John Beggs (Indiana University)

» Braden Brinkman (University of Washington, to be confirmed)

» Sakyasingha Dasgutpa, RIKEN Brain Science Insititute / IBM Research - Tokyo

« Justin Dauwels, Nanyang Technological University

« Joseph T. Lizier, The University of Sydney

« Mark McDonnell, University of South Australia

+ Masafumi Oizumi, Monash University

+ Rama Ratnam, University of lllinois at Urbana-Champaign (USA), and Advanced Digital Sciences Center,
lllinois at Singapore (Singapore)

 Tatyana Sharpee, Salk Institute for Biological Studies

» Shigeru Shinomoto, Kyoto University

+ Eli Shlizerman (University of Washington, to be confirmed)

 Adria Tauste (Universitat Pompeu Fabra)

+ Taro Toyoizumi, RIKEN Brain Science Institute

» Michael Wibral, Goethe University

+ Si Wu, Beijing Normal University
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w2 Connectome: Structure and Large Scale Dynamics
302, Wednesday, 9:00 — 16:30

Leonardo L Gollo, QIMR Berghofer Medical Research Institute, Australia
James A. Roberts, QIMR Berghofer Medical Research Institute, Australia

Studies of the connectome are re-shaping the field of neuroscience. Networks have become a ubiquitous lan-
guage. This is certainly reflected in computational neuroscience, where more and more groups are addressing
problems at the large scale. However, the number of open questions is growing rapidly, so it is timely for com-
putational neuroscientists to both direct our attention to the most important issues, and to grow capacity to take
advantage of the opportunities that are unfolding. The workshop will present and highlight some of the important
recent contributions on the structure of the connectome and the large-scale dynamics that it supports. We ex-
pect to have two round table sessions (closing the morning and the afternoon sessions) in which discussion will
take place with the specific aim of exposing and highlighting the main issues and the interfaces where quantita-
tive skills (abundant among computational neuroscientists) can be successfully applied to address exceptional
emerging problems.

Speakers:

+ Selen Atasoy (UPF)

» Ben D. Fulcher (Monash)

* Leonardo L. Gollo (QIMRB)
+ Christopher J. Honey (Toronto)
 Jorge F. Mejias (NYU)

+ Bratislav Misic (Indiana)

+ James A. Roberts (QIMRB)
» Paula Sanz-Leon (Sydney)

* Andreas Spiegler (AMU)

» Andrew Zalesky (Melbourne)
» Changsong Zhou (HKBU)
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W3 Statistical Analysis for Neural Time Series
302, Thursday, 9:00 — 16:30

I Memming Park, Stony Brook University
lan Stevenson, University of Connecticut

New technologies for recording from large groups of neurons provide an exciting opportunity for figuring out
how the nervous system implements computations that underlie perception, cognition, and behavior. However,
neural time series are complex and often high-dimensional, and there is a major bottleneck in statistical and
computational methods for making sense of them. We aim to discuss statistical approaches for analyzing neural
time series to increase our understanding of the neural code and computation. Scientific questions of interest
include, but not limited to,

1. How can we incorporate neuroscience knowledge on the structure of the circuit or dynamics into neural
data analysis?

2. How can we make efficient use of noisy, limited data? and

3. What machine learning tools can be applied to nonlinear neural time series?

Speakers:

+ Shin Ishii (Kyoto University, Japan)

+ Justin Dauwels (Nanyang Technological University, Singapore)

+ Taro Toyoizumi (RIKEN Brain Science Institute, Japan)

Sukbin Lim (NYU Shanghai, China)

Eftychios Pnevmatikakis (Simons Center for Data Analysis, USA)
Si Wu (Beijing Normal University, China)

Shinsuke Koyama (Institute of Statistical Mathematics, Japan)

* Memming Park (Stony Brook University, USA)
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w4 Multi-Area Models of Cortex
402A, Thursday, 9:00 — 16:30

Sacha Jennifer van Albada, Institute of Neuroscience and Medicine (INM-6) Computational and Sys-
tems Neuroscience and Institute for Advanced Simulation (IAS-6) Theoretical Neuroscience and JARA
BRAIN Institute |, Julich Research Centre, Julich, Germany

Gustavo Deco, Center for Brain and Cognition, Computational Neuroscience Group, Department of
Information and Communication Technologies & Institucié Catalana de la Recerca i Estudis Avancats
(ICREA), Universitat Pompeu Fabra, Barcelona, Spain

Cortical areas do not operate in isolation; rather, they interact extensively even during rest, and work together
to produce function. Due to a lack of available human and computational resources as well as anatomical and
physiological data, multi-area models of cortex are traditionally heavily simplified. Recent advances in computa-
tional resources, simulation technology and experimental data are expanding the options for large-scale cortical
modeling. Through their integrative nature, large-scale brain models help identify gaps in experimental knowl-
edge.

This workshop aims to provide an overview over current multi-area cortical modeling efforts, prominent experi-
mental findings addressed by such models, and ways in which systematic knowledge can be gained from large-
scale simulation studies, for instance with the help of mean-field theory.

The workshop targets modelers, theorists and experimentalists interested in multi-area cortical models, the un-
derlying methodology, and the data needed to specify them.

Speakers:

» Andre M Bastos (MIT)

» Steven Bressler (Florida Atlantic University)

+ Joana Cabral (University of Oxford)

» Martin Giese (University Clinic Tubingen)

+ Matthieu Gilson (Pompeu Fabra University)

+ Stefan Mihalas (Allen Institute for Brain Science)
» Paula Sanz-Leon (The University of Sydney)

» Maximilian Schmidt (Julich Research Centre)

» Xiao-Jing Wang (New York University)
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W5 Dynamical principles in Neural circuits
402A, Wednesday, 9:00 — 12:00

Andrey Shilnikov, Georgia State University, USA
Akira Sakurai, Georgia State University, USA

The workshop will address the fundamental question of how circuit architectures infer and contribute to the dy-
namics of neural activity. Understanding generic mechanisms of the evolution of neural connectivity and transi-
tions between different patterns of neural activity and modeling these processes are the fundamental challenges
for applied mathematics and computational neuroscience. It will extend and generalize our understanding of
dynamical principles in neural systems. Current and future findings will provide a systematic basis for compre-
hension of plausible biophysical mechanisms for the origination and regulation of rhythmic patterns including
ones generated by central pattern generators.

Speakers:

* Yaroslav Molkov (Georgia State, USA)

» Thomas Nowotny (Essex, UK)

» Choongseok Park (NC A&T State, USA)
Astrid Prinz (Emory, USA)

+ Leonid Runchinsky (IUPI, SA)

Akira Sakurai (Georgia State, USA)

David Terman (Ohio State, USA)

» Krasimira Tsaneva-Atanasova (Exeter, UK)
Kyle Wedgwood (Exeter, UK)
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wé Cortical Microcircuits: Understanding network structure and function in cortical processing
303A + 303B, Wednesday, 9:00 — 12:00
Hamish Meffin, National Vision Research Institute, and Department of Optometry and Visual Science,
The University of Melbourne
Anthony Burkitt, Department of Electrical and Electronic Engineering, The University of Melbourne

Understanding how our brain computes and analyses sensory inputs from our external environment whilst en-
abling us to experience such rich and varied mental lives is one of the great scientific challenges of the 21st
Century. Recent advances have uncovered much about the cerebral cortex, with its 2-4mm thick sheet of neu-
rons having a consistent anatomical structure consisting of six well-characterised layers and network connectivity.
This workshop aims to draw together some of the recent research in understanding these cortical microcircuits
and the various approaches that are being pursued to analyse their structure and function.

Speakers:

* Michael Riemann (Blue Brain Project, EPFL, Switzerland)

» Andre Bastos (Picower Institute for Learning and Memory, MIT , USA)

+ Hannah Bos (Institute of Neuroscience and Medicine, Research Centre Julich , Germany)

+ Jorge Mejias (Center for Neural Science , New York University, USA)

+ Abigail Morrison (Institute of Neuroscience and Medicine, Research Centre Julich , Germany)
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w7 Recent advances and applications in real-time single-trial EEG analysis
303A + 303B, Wednesday, 13:30 — 16:30

Tzyy-Ping Jung, University of California, San Diego
John K. Zao, Chiao-Tung University
Jee Hyun Choi, Korea Institute of Science and Technology

Recent advances in wearable, dry-electrode electroencephalogram (EEG) system revolutionize the real time
brain monitoring, yielding exciting new possibilities for clinical diagnostics and brain-computer interface outside
the lab environment.

In this workshop, we will present the current state-of-the art in real time decoding of cognitive process in EEG
signals. Talks will cover the analysis and measurement platform for the various representations of cognitive func-
tions. Additionally, clinical and neuroscientific application will be presented. This workshop will take a broad view
of contemporary EEG research and will be of interest to basic, translational, clinical investigators notwithstanding
the engineers.

Speakers:
» Tzyy-Ping Jung (University of California, San Diego)
» John K. Zao (National Chiao Tung University)
+ Jee Hyun Choi (Korea Institute of Science and Technology)
» Kyung Hwan Kim (Yonsei University)
« Chang-Hwan Im (Hanyang University)
» Sung Phil Kim (Ulsan National Institute of Science and Technology)
» Han-deong Hwang (Kumoh National Institute of Technology)
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Neural network as a scale-free network: The Role of a Hub
Byungnam Kahng*

Department of Physics and Astronomy, Seoul National University, 08826, Korea

Hemodynamic Responses to Emotions and Decisions using Near-infrared Spectroscopy Optical
Imaging

Nicoladie D Tam*

Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

Phase Space Analysis of Hemodynamic Responses to Intentional Movement Directions using
Functional Near-Infrared Spectroscopy (fNIRS) Optical Imaging Technique

Nicoladie D Tam'*, Luca Pollonini?, and George Zouridakis®

"Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

2College of Technology, the University of Houston, TX, 77204, USA

3Departments of Engineering Technology, Computer Science, and Electrical and Computer Engineering, University
of Houston, Houston, TX, 77204, USA

Modeling Jamming Avoidance of Weakly Electric Fish
Jaehyun Soh, Daeeun Kim*

Biological Cybernetics, School of Electrical and Electronic Engineering, Yonsei University, Shinchon, Seoul, 120-
749, South Korea,

Synergy and redundancy of retinal ganglion cells in prediction
Minsu Yoo'*, Stephanie E Palmer'2

"Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
2Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA

A neural field model with a third dimension representing cortical depth
Viviana Culmone*, Ingo Bojak
School of Psychology, University of Reading, Reading, Berkshire, RG1 6AY, UK

Network analysis of a probabilistic connectivity model of the Xenopus tadpole spinal cord
Andrea Ferrario*, Robert Merrison-Hort, and Roman Borisyuk

School of Computing and Mathematics, Plymouth University, Plymouth, PL4 8AA, United Kingdom
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The Recognition Dynamics in the Brain
Chang Sub Kim*

Department of Physics, Chonnam National University, Gwangju, 61186, Republic of Korea

Multivariate Spike Train Analysis using a Positive Definite Kernel
Taro Tezuka*

Faculty of Library, Information and Media Science, University of Tsukuba, Tsukuba, 305-0821, Japan

Synchronization of burst periods may govern slow brain dynamics during general anesthesia
Joo Pangyu*
Department of Physics, POSTECH, Pohang, 37673, Republic of Korea

The ionic basis of heterogeneity affects stochastic synchrony

Young-Ah Rho'#*, Shawn Burton?2, G. Bard Ermentrout’-2, Jaeseung Jeong*, and Nathaniel M Ur-
ban?3

"Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA 15260

2Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 15213

3Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA 15213

“Department of Bio and Brain Engineering/Program of Brain and Cognitive Engineering, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon, South Korea 34141

Circular statistics of noise in spike trains with a periodic component
Petr Marsalek’-2*

"Inst. of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, 128 53, Czech Republic
2Czech Technical University in Prague, Zikova 1903/ 4, 166 36, Czech Republic

Using fractional order dynamics to study non-Markovian neuronal activity
Fidel Santamaria*

UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA

Representations of directions in EEG-BCI using Gaussian readouts

Hoon-Hee Kim'2*, Seok-Hyun Moon?, Do-Won Lee®, Sung-Beom Lee®, Ji-Yong Lee®, and Jaeseung
Jeong'?

"Department of Bio and Brain Engineering

2Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, South Korea, 34141

3Korea Science Academy of KAIST, Busan, South Korea, 10547

Action Selection and Reinforcement Learning in Basal Ganglia during Reaching Movements

Yaroslav Molkov'*, Khaldoun Hamade?, Wondimu Teka®, William Barnett!, Taegyo Kim?, Sergey
Markin?, and llya Rybak?®

’Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
2Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, USA
3Department of Mathematical Sciences, Indiana University — Purdue University, Indianapolis, IN 46202, USA
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Plasticity-driven self-organization under topological constraints accounts for non-random fea-
tures of cortical synaptic wiring

Daniel Miner*, Jochen Triesch

Neuroscience Department, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, 60438, Germany

Axon guidance: modeling axonal growth in T-Junction assay
Csaba Forro*, Harald Dermutz, Laszlo Demko, and Janos Voros
LBB, ETH Ziirich, Ziirich, 8051, Switzerland

Modelling visual attention using spiking neural networks
Roberto A Vazquez*

Intelligent Systems Group, Faculty of Engineering, La Salle University, Mexico City, 06140, MEX

Transient cell assembly networks encode persistent spatial memories
Yuri Dabaghian'2*, Andrey Babichev'?

" Department of Neurology Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
2Department of Computational and Applied Mathematics, Rice University, Houston, TX, 77005, USA

Theory of population coupling and applications to describe high order correlations in large pop-
ulations of interacting neurons

Haiping Huang*

RIKEN Brain Science Institute, Wako-shi, Saitama, Japan

Design of biologically-realistic simulations for motor control
Sergio Verduzco-Flores*

Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 1919-1, Japan

Towards understanding the functional impact of the behavioural variability of neurons
Filipa Dos Santos*, Peter Andras

School of Computing and Mathematics, Keele University, ST5 5BG, UK

Different oscillatory dynamics underlying gamma entrainment deficits in schizophrenia
Christoph Metzner'*, Achim Schweikard?, and Bartosz Zurowski®

'Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom
2Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
3Department of Psychiatry, University of Luebeck, Schleswig-Holstein, Luebeck, Germany

Memory recall and spike frequency adaptation.
James P Roach'*, Leonard Sander?2, and Michal Zochowski?34

"Neuroscience Graduate Program, University of Michigan, Ann Arbor, Ml 48109, USA
2Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Ml 48109, USA
3Department of Physics, University of Michigan, Ann Arbor, Ml 48109, USA

“Biophysics Program, University of Michigan, Ann Arbor, Ml 48109, USA
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Stability of neural networks and memory consolidation preferentially occur near criticality
Quinton M Skilling'*, Nicolette Ognjanovski?, Sara Aton?, and Michal Zochowski'-®

'Biophysics Program, University of Michigan, Ann Arbor, Ml 48109 USA
2Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109 USA
3Department of Physics, University of Michigan, Ann Arbor, Ml 48109 USA

Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting
State in Neural Systems

Shengjun Wang'?, Guang Ouyang?, Jing Guang®, Mingsha Zhang?®, Ky Michael Wong*, and Chang-
song Zhou?56+

" Department of Physics, Shaanxi Normal University, Xi’An City, ShaanXi Province, China

2Department of Physics and Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong
Kong Baptist University, Kowloon Tong, Hong Kong

3State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
“Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

%Beijing Computational Science Research Center, Beijing 100084, People’s Republic of China

5Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen, China

Neurofield: A C++ library for fast simulation of 2D neural field models

Peter Robinson'?, Paula Sanz-Leon'-?*, Peter Drysdale'?, Felix Fung'-2, Romesh Abeysuriya®, Chris
Rennie'2, and Xuelong Zhao'-?

"School of Physics, University of Sydney, Sydney, New South Wales, 2006, Australia
2Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales, 2006, Australia
3Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, OX37JX, United Kingdom

Action-based grounding: Beyond encoding/decoding in neural code
Yoonsuck Choe'*, Huei-Fang Yang?

" Department of Computer Science & Engineering, Texas A&M University, College Station, TX, 77845, USA
2Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

Neural computation in a dynamical system with multiple time scales
Yuanyuan Mi, Xiaohan Lin, and Si Wu

State Key Lab of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal
University, Beijing 100875, China

Maximum entropy models for 3D layouts of orientation selectivity
Joscha Liedtke'2, Manuel Schottdorf!?*, and Fred Wolf'2

"Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
2Bernstein Center for Computational Neuroscience, Goettingen, Germany

A behavioral assay for probing computations underlying curiosity in rodents
Yoriko Yamamura*, Jeffery Wickens

Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, 904-0412, Japan
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Using statistical sampling to balance error function contributions to optimization of
conductance-based models

Timothy Rumbell', Julia Ramsey?, Amy Reyes?, Danel Draguljic?, Patrick Hof®, Jennifer Luebke*, and
Christina M Weaver2*

" Computational Biology Center, IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
2Department of Mathematics, Franklin and Marshall College, Lancaster, PA 17604

3Fishberg Department of Neuroscience and Friedman Brain Institute, Ilcahn School of Medicine at Mount Sinai,
New York, NY 10029

“Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118

Exploration and implementation of a self-growing and self-organizing neuron network building
algorithm

Hu He', Xu Yang?*, Hailin Ma', Zhiheng Xu', and Yuzhe Wang'

!Institute of Microelectronics, Tsinghua University, Beijing, 100081, China
2School of Software, Beijing Institute of Technology, Beijing, 100083, China

Disrupted resting state brain network in obese subjects: A data-driven graph theory analysis
Kwangyeol Baek'-2*, Laurel Morris', Prantik Kundu®, and Valerie Voon'

" Department of Psychiatry, University of Cambridge, Cambridge, CB2 0QQ), United Kingdom
2Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
3Departments of Radiology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, 10029,USA

Dynamics of cooperative excitatory and inhibitory plasticity
Everton Agnes*, Tim Vogels
Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK

Frequency-dependent oscillatory signal gating in feed-forward networks of integrate-and-fire
neurons

William F Podlaski*, Tim Vogels

Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK

Phenomenological neural model for adaptation of neurons in area IT
Martin Giese'*, Pradeep Kuravi?, and Rufin Vogels?®

'Section Computational Sensomotorics, CIN & HIH, Department of Cognitive Neurology, University Clinic Tiibingen,
Germany
21 ab. Neuro en Psychofysiologie, Dept. Neuroscience, KU Leuven, Belgium

ICGenealogy: Towards a Common Topology of Neuronal lon Channel Function and Genealogy
in Model and Experiment

Alexander Seeholzer'*, William F Podlaski?, Rajnish Ranjan?, and Tim Vogels?

’Laboratory of Computational Neuroscience, EPF Lausanne, Switzerland
2Centre for Neural Circuits and Behaviour, University of Oxford, UK
3The Blue Brain Project, EPF Lausanne, Switzerland
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Temporal input discrimination from the interaction between dynamic synapses and neural sub-
threshold oscillations

Joaquin J. Torres', Fabiano Baroni?, Roberto Latorre®, and Pablo Varona®*

"Departamento de Electromagnetismo y Fisica de la Materia, and Institute “Carlos I” for Theoretical and Computa-
tional Physics, University of Granada, Granada, Spain

2School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Aus-
tralia

3Grupo de Neurocomputacion Biolégica, Dpto. de Ingenieria Informatica, Escuela Politécnica Superior, Universidad
Auténoma de Madrid, Spain

Different roles for transient and sustained activity during active visual processing
Bart Gips'*, Eric Lowet'?, Mark Roberts'?, Peter de Weerd?, Ole Jensen', and Jan van Der Eerden'

"Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 EN Nijmegen, The Netherlands
2Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands

Scale-free functional networks of 2D Ising model are highly robust against structural defects:
Neuroscience implications

Abdorreza Goodarzinick'*, Mohammad D Niry'2, and Alireza Valizadeh'3

"Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
2Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic
Sciences (IASBS), Zanjan 45137-66731, Iran

3School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran - Iran

High frequency neuron can facilitate propagation of signal in neural networks
Aref Pariz'*, Shervin Parsi', and Alireza Valizadeh'2

"Department of Physics, Institute for advanced studies in basic sciences, Zanjan, Iran
2School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Niavaran, Tehran, Iran

Investigating the effect of Alzheimer’s disease related amyloidopathy on gamma oscillations in
the CA1 region of the hippocampus

Julia M Warburton'*, Lucia Marucci?, Francesco Tamagnini®#, Jon Brown3#, and Krasimira Tsaneva-
Atanasova®

'Bristol Centre for Complexity Sciences, University of Bristol, Bristol, BS8 1TR, UK
2Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK.
4Medical School, University of Exeter, Exeter, EX4 4PE, UK.

SDepartment of Mathematics, University of Exeter, Exeter, EX4 4QF, UK

Long-tailed distributions of inhibitory and excitatory weights in a balanced network with eSTDP
and iSTDP

Florence Kleberg*, Jochen Triesch

Frankfurt Institute for Advanced Studies, Frankfurt am Main, Hessen, Germany, 60438
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Simulation of EMG recording from hand muscle due to TMS of motor cortex

Bahar Moezzi'*, Nicolangelo lannella’#, Natalie Schaworonkow?, Lukas Plogmacher?, Mitchell R.
Goldsworthy®, Brenton Hordacre®, Mark D McDonnell', Michael C. Ridding®, and Jochen Triesch?

"Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical
Sciences, University of South Australia, Australia

2Frankfurt Institute for Advanced Studies, Goethe-Universitat, Germany

3Robinson Research Institute, School of Medicine, University of Adelaide, Australia

4School of Mathematical Sciences, University of Nottingham, UK

Structure and dynamics of axon network formed in primary cell culture
Martin Zapotocky'-?*, Daniel Smit'?3, Coralie Fouquet®, and Alain Trembleau®

' Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic

2Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Czech Republic
3IBPS, Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, UPMC UM 119, Université Pierre et Marie
Curie, Paris, France

Efficient signal processing and sampling in random networks that generate variability
Sakyasingha Dasgupta'2*, Isao Nishikawa®, Kazuyuki Aihara®, and Taro Toyoizumi?

IBM Research - Tokyo, Japan
2RIKEN Brain Science Institute, Japan
3The University of Tokyo, Japan

Modeling the effect of riluzole on bursting in respiratory neural networks
Daniel Robb'*, Nick Mellen?, and Natalia Toporikova®

"Department of Mathematics, Computer Science and Physics, Roanoke College, Salem, VA 24153, USA
2Department of Pediatrics, University of Louisville, Louisville, KY 40208, USA
3Department of Biology, Washington and Lee University, Lexington, VA 24450, USA

Mapping relaxation training using effective connectivity analysis
Yi-Yuan Tang'*, Rongxiang Tang?

" Department of Psychology, Washington University in St. Louis, St. Louis, MO 63130, USA
2Department of Psychological Sciences, Texas Tech University, TX 79409, USA

Modeling neuron oscillation of implicit sequence learning
Guangsheng Liang', Seth Kiser®2, James Howard?, and Yi-Yuan Tang'*

" Department of Psychological Sciences, Texas Tech University, TX 79409, USA
2The Department of Veteran Affairs, District of Columbia VA Medical Center, Washington, DC 20420, USA
3Department of Psychology, The Catholic University of America, Washington, DC 20064, USA.

The role of cerebellar short-term synaptic plasticity in the pathology and medication of downbeat
nystagmus

Julia Goncharenko*, Neil Davey, Maria Schilstra, and Volker Steuber

Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, AL10 9EJ, UK

Nonlinear response of noisy neurons
Sergej Voronenko'-?*, Benjamin Lindner-?

" Department of Physics, Humboldt University, Berlin, 10099, Germany
2Bernstein Center for Computational Neuroscience, Berlin, 10115, Germany
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Behavioral Embedding Suggests Multiple Chaotic Dimensions Underlie C. elegans Locomotion
Tosif Anamed'*, Greg Stephens'2

'Biological Physics Theory Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
2Department of Physics and Astronomy, Vrije Universiteit Amsterdam

Fast and scalable spike sorting for large and dense multi-electrodes recordings
Pierre Yger*, Baptiste Lefebvre, Giulia Spampinato, Elric Esposito, Marcel Stimberg, and Olivier Marre
Institut de la Vision, INSERM UMRS 968, CNRS UMR 7210, Paris

Sufficient sampling rates for fast hand motion tracking
Hansol Choi', Minho Song?*

"Bernstein Center Freiburg, Institute of Biology Ill, University of Freiburg, Germany, 79100
2fourMs group, Dept. Musicology, University of Oslo, Norway, 0371

Linear Readout of Object Manifolds
Sueyeon Chung'*, Dan D Lee?, and Haim Sompolinsky'3

" Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
2Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
3Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel

Differentiating models of intrinsic bursting and rhythm generation of the respiratory pre-
Bétzinger complex using phase response curves

Ryan Phillips'2*, Jeffrey Smith'

"NINDS, NIH, Bethesda, 20892, USA
2Department of Physics, University of New Hampshire, Durham, NH, 03824, USA

The effect of inhibitory cell network interactions during theta rhythms on extracellular field po-
tentials in CA1 hippocampus

Alexandra Chatzikalymniou Pierri'?*, Katie Ferguson'#, and Frances Skinner?-3-

"Krembil Research Institute, University Health Network, Toronto, ON
2Department of Physiology, University of Toronto, Toronto ON

3Department of Medicine (Neurology), University of Toronto, Toronto ON
“Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520

Expansion recoding through sparse sampling in the cerebellar input layer speeds learning
Alex Cayco Gajic'*, Claudia Clopath?, and R. Angus Silver!

"Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
2Department of Bioengineering, Imperial College London, London, UK

A set of curated cortical models at multiple scales on Open Source Brain

Padraig Gleeson'*, Boris Marin!, Sadra Sadeh', Adrian Quintana', Matteo Cantarelli?, Salvador Dura-
Bernal®, William W Lytton®, Andrew P Davison*, and R. Angus Silver!

"Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
2Metacell LLC, San Diego, California, USA

3State University of New York Downstate Medical Center, Brooklyn, NY, USA

“Neuroinformatics group Unité de Neurosciences, Information et Complexité, CNRS, Gif sur Yvette, France
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A Synaptic Story of Dynamical Information Encoding in Neural Adaptation
Luozheng Li', Wenhao Zhang', Yuanyuan Mi', Dahui Wang'-?, and Wu Si'*

'State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing
Normal University, Beijing 100875, China
2School of System Science, Beijing Normal University, Beijing 100875, China

Physical Modeling of Rule-observant Rodent Behavior
Youngjo Song'*, Sol Park'2, Ilhwan Choi?, Jaeseung Jeong', and Hee-Sup Shin?

'Bio and Brain Engineering, KAIST, Daejeon, 34141, Rep. of Korea
2Center for Cognition and Sociality, IBS, Daejeon, 34047, Rep. of Korea

How Adaptation Makes Low Firing Rates Robust
Joon Ha*, Arthur Sherman
Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD 20892, USA

Predictive coding in area V4 and prefrontal cortex explains dynamic discrimination of partially
occluded shapes

Hannah Choi'23*, Anitha Pasupathy®2, and Eric Shea-Brown'3

" Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
2 Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
SUW Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA

Stability of FORCE learning on spiking and rate-based networks
Dongsung Huh'*, Terrence J Sejnowski'2

"The Salk Institute for Biological Studies, La Jolla, CA 92037 USA
2Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92095 USA

Stabilising STDP in striatal neurons for reliable fast state recognition in noisy environments
Simon Vogt'*, Arvind Kumar?3, and Robert Schmidt'2

"BrainLinks-BrainTools, Cluster of Excellence, University of Freiburg, Germany
2Faculty of Biology and Bernstein Center Freiburg, University of Freiburg, Germany
3Department of Computational Biology, Royal Institute of Technology Stockholm, Sweden

Electrodiffusion in One- and Two-Compartment Neuron Models for Characterizing Cellular Ef-
fects of Electrical Stimulation

Stephen van Wert'*, Steven Schiff'2

"Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State Uni-
versity, University Park, PA 16802, USA
2Departments of Neurosurgery and Physics, The Pennsylvania State University, University Park, PA 16802, USA

STDP improves speech recognition capabilities in spiking recurrent circuits parameterized via
Differential Evolution Markov Chain Monte Carlo
Richard E Veale'*, Matthias Scheutz?

" National Institute for Physiological Sciences, Okazaki, Aichi, Japan
2Deparmtnt of Computer Science, Tufts University, Medford, MA, USA
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Monday Posters
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Bidirectional transformation between dominant cortical neural activities and phase difference
distributions

Sang Wan Lee!23*

" Department of Bio and Brain Engineering,
2Program of Brain and Cognitive Engineering
SKAIST Institute for Health Science and Technology, Daejeon, South Korea

Maturation of sensory networks through homeostatic structural plasticity
Julia Gallinaro*, Stefan Rotter

Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Baden-Wirttember, 79194, Ger-
many

Corticothalamic dynamics: structure, number of solutions and stability of steady-state solutions
in the space of synaptic couplings

Paula Sanz-Leon'2*, Peter Robinson'

"School of Physics, University of Sydney, New South Wales, Australia
2Center for Integrative Brain Function, University of Sydney, New South Wales, Australia

Optogenetic vs. electrical stimulation of the parkinsonian basal ganglia. Computational study
Leonid Rubchinsky'-?*, Chungs Cheung', and Shivakeshavan Ratnadurai-Giridharan’

"Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
2Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA

Exact spike-timing distribution reveals higher-order interactions
Safura Rashid Shomali'*, Majid Nili Ahmadabadi’-?, Hideaki Shimazaki®, and S Nader Rasuli*®

School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran
2School of ECE, College of Engineering, University of Tehran, Tehran, 14155-6619, Iran

3RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan

“Department of Physics, University of Guilan, Rasht, 41335-1914, Iran

°School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran

Neural Mechanism of Visual Perceptual Learning Using a Multi-layered Neural Network
Xiaochen Zhao*, Malte Rasch

State Key Lab of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal
University, Beijing 100875, China

Inferring collective spiking dynamics from mostly unobserved systems
Jens Wilting', Viola Priesemann’-2*

" Max-Planck-Institute for Dynamics and Self-Organization, D-37077 Géttingen, Germany
2Bernstein Center for Computational Neuroscience, University of Géttingen, D-37075 Géttingen, Germany
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How to infer distributions in the brain from subsampled observations
Anna Levina'*, Viola Priesemann?

1IST Austria, Klosterneuburg, 3400, Austria
2BCCN & MPI for Dynamics and Self-Organization, Géttingen, 37077, Germany

Influences of embedding and estimation strategies on the inferred memory of single spiking
heurons

Lucas Rudelt!, Joseph Lizier?, and Viola Priesemann'*

"Dept. of Non-linear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Géttingen, Germany
2School of Civil Engineering, The University of Sydney, Sydney, NSW, Australia

A nearest-neighbours based estimator for transfer entropy between spike trains
Joseph Lizier'*, Richard Spinney', Mikail Rubinov?2, Michael Wibral*, and Viola Priesemann®®

"Complex Systems Research Group, Faculty of Engineering & IT, The University of Sydney, NSW 2006, Australia
2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA

3Department of Psychiatry, University of Cambridge

*MEG Unit, Brain Imaging Center, Goethe University, 60528 Frankfurt am Main, Germany

®Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Géttingen, Germany
5Bernstein Center for Computational Neuroscience, Géttingen, Germany

Active learning of psychometric functions with multinomial logistic models
Ji Hyun Bak'*, Jonathan Pillow?

" Department of Physics & Lewis-Sigler Institute for Integrative Genomics,
2Department of Psychology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA

Connectome harmonics reveal organizing principles behind brain’s functional networks
Selen Atasoy’?*, Isaac Donnelly?23, Gustavo Deco', and Joel Pearson?®

! Center for Brain and Cognition, University of Pompeu Fabra, Barcelona, 08018, Spain
2School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
3School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia

Inferring low-dimensional network dynamics with variational latent Gaussian process
Yuan Zhao'-?, Il Memming Park’-3*

" Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
2Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
3Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794, USA

Computational investigation of energy landscapes in the resting state subcortical brain network
Jiyoung Kang', Hae-Jeong Park?*

"Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako, Hyogo, 678-1297, Japan
2Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Department
of Cognitive Science, Yonsei University 50 Yonsei-ro, Sinchon-dong Seodaemoon-gu, Seoul, 120-752, Republic of
Korea
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Local repulsive interaction between retinal ganglion cells can generate a consistent spatial pe-
riodicity of orientation map

Jaeson Jang'*, Se-Bum Paik'?

" Department of Bio and Brain engineering
2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon
34141, Republic of Korea

Phase duration of bistable perception reveals intrinsic time scale of perceptual decision under
noisy condition

Woochul Choi'2*, Se-Bum Paik'+2

" Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, KAIST, Daejeon 34141, Republic of Korea

Feedforward convergence between retina and primary visual cortex can determine the structure
of orientation map

Changju Lee'*, Jaeson Jang', and Se-Bum Paik'?

"Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon
34141, Republic of Korea

Quantitative Classification of Neural Network Activity Patterns in Imaging Data
Min Song'-?*, Hyeonsu Lee', and Se-Bum Paik'?

"Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon
34141, Republic of Korea

Symmetry of spike-timing-dependent-plasticity kernels regulates volatility of memory
Park Youngjin'*, Woochul Choi', and Se-Bum Paik'-?

"Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon
34141, Republic of Korea

Effects of time-periodic coupling strength on the first-spike latency dynamics of a scale-free
network of stochastic Hodgkin-Huxley neurons

Ergin Yilmaz', Veli Baysal'*, and Mahmut Ozer?

"Department of Biomedical Engineering, Biilent Ecevit University, Zonguldak 67100, Turkey
2Department of Electrical and Electronics Engineering, Biilent Ecevit University, Zonguldak 67100, Turkey

Spectral properties of spiking responses in V1 and V4 change within the trial and are highly
relevant for behavioral performance.

Veronika Koren'2*, Klaus Obermayer'?

'Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin,
10587, Germany

2Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universitaet zu Berlin, Berlin, 10115, Ger-
many
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Methods for building accurate models of individual neurons
Daniel Saska*, Thomas Nowotny

School of Engineering and Informatics, Sussex Neuroscience, University of Sussex, Falmer, Brighton BN1 9QJ,
UK

A full size mathematical model of the early olfactory system of honeybees
Ho Ka Chan*, Alan Diamond, and Thomas Nowotny

School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK

Stimulation-Induced Tuning of Ongoing Oscillations in Spiking Neural Networks
Christoph S. Herrmann', Micah M. Murray?, Silvio lonta?, Axel Hutt®, and Jeremie Lefebvre**

"Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany

2The Laboratory for Investigative Neurophysiology (The LINE), Department of Clinical Neurosciences and Depart-
ment of Radiology, University Hospital Center and University of Lausanne, Lausanne 1011, Switzerland
3Deutscher Wetterdienst, 63067 Offenbach, Germany

“Krembil Research Institute, University Health Network, Toronto, Ontario M5T 288, Canada

Decision-specific sequences of neural activity in balanced random networks driven by struc-
tured sensory input

Philipp Weidel'*, Renato Duarte'#®, and Abigail Morrison'-2-34

' Institute of Advanced Simulation (IAS-6) & Institute of Neuroscience and Medicine (INM-6) & JARA BRAIN Institute
I, Jiilich Research Center, 52425 Jiilich, Germany

2Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801 Bochum, Germany
3Simulation Laboratory Neuroscience — Bernstein Facility for Simulation and Database Technology, Institute for
Advanced Simulation, Jilich Aachen Research Alliance, Jilich Research Center, Jilich, Germany

“Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, 79104, Germany
SInstitute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, EH8 9AB, UK

Modulation of tuning induced by abrupt reduction of SST cell activity
Jung Lee*, Ramakrishnan lyer, and Stefan Mihalas
Allen Institute for Brain Science, Seattle, WA 98109, USA

The functional role of VIP cell activation during locomotion
Jung Lee*, Ramakrishnan lyer, Christof Koch, and Stefan Mihalas
Allen Institute for Brain Science, Seattle, WA 98109, USA

Stochastic inference with spiking neural networks

Mihai Petrovici*, Luziwei Leng, Oliver Breitwieser, David Stéckel, llja Bytschok, Roman Martel, Jo-
hannes Bill, Johannes Schemmel, and Karlheinz Meier

Kirchhoff-Institute for Physics, University of Heidelberg, Germany

Modelling orientation-selective electrical stimulation with retinal prostheses

Timothy Esler'*, Anthony Burkitt!, David B Grayden', Robert Kerr?, Bahman Tahayori®, and Hamish
Meffin*

" NeuroEngineering Laboratory, Electrical & Electronic Engineering, The University of Melbourne
2|BM Research Australia

3Monash Institute of Medical Engineering, Monash University, Melbourne

“National Vision Research Institute, Melbourne
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lon channel noise can explain firing correlation in auditory nerves
Bahar Moezzi'*, Nicolangelo lannella'?, and Mark D McDonnell

"Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical
Sciences, University of South Australia, Australia
2School of Mathematical Sciences, University of Nottingham, UK

Limits of temporal encoding of thalamocortical inputs in a neocortical microcircuit
Max Nolte*, Michael Reimann, Eilif Muller, and Henry Markram

Blue Brain Project, Ecole Polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland

On the representation of arm reaching movements: a computational model
Antonio Parziale*, Rosa Senatore, and Angelo Marcelli

Department of Information and Electrical Engineering, University of Salerno, 84084, Fisciano (SA), ITALY

A computational model for investigating the role of cerebellum in acquisition and retention of
motor behavior

Rosa Senatore'2, Antonio Parziale', and Angelo Marcelli'*

"Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Fisciano
(SA), 81100, ITALY
2| aboratory of Neural Computation, Istituto Italiano di Tecnologia, Rovereto (TN), 38068, ITALY

The emergence of semantic categories from a large-scale brain network of semantic knowledge
Kaoutar Skiker'*, Mounir Maouene?

"LIST Laboratory, FST, Abdelmalek Essaadi’s University, Tangier, Morocco
2Department of computer science, ENSAT, Abdelmalek Essaadi’s University, Tangier, Morocco

Multiscale modeling of M1 multitarget pharmacotherapy for dystonia

Samuel Neymotin'?, Salvador Dura-Bernal', Alexandra Seidenstein'3, Peter Lakatos*, Terence
Sanger®®, and William W Lytton"7*

" Department Physiology & Pharmacology, SUNY Downstate, Brooklyn, NY 11203, USA

2Department Neuroscience, Yale University School of Medicine, New Haven, CT, USA

3Dept. Chemical & Biomedical Engineering, Tandon School of Engineering, NYU, Brooklyn, NY, USA
“Nathan Kiline Institute for Psychiatric Research, Orangeburg, NY, USA

°Department Biomedical Engineering, University of Southern California, Los Angeles, CA, USA

¢Div Neurology, Child Neurology and Movement Disorders, Children’s Hospital Los Angeles, LA, CA, USA
’Department Neurology, Kings County Hospital Center, Brooklyn, NY 11203, USA

Effect of network size on computational capacity

Salvador Dura-Bernal', Rosemary Menzies?, Campbell McLauchlan?, Sacha Jennifer van Albada®,
David Kedziora?, Samuel Neymotin', William W Lytton', and Cliff C Kerr?*

"Dept. of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11023, USA
2Complex Systems Group, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
3Institute of Neuroscience and Medicine (INM-6), Jiilich Research Centre and JARA, Jiilich, Germany
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NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of
biological neuronal networks

Salvador Dura-Bernal, Benjamin A Suter?, Samuel Neymotin', Cliff C Kerr3, Adrian Quintana®, Padraig
Gleeson*, Gordon Mg Shepherd?, and William W Lytton'*

"Department Physiology & Pharmacology, SUNY Downstate, Brooklyn, NY 11203, USA

2Department Physiology, Northwestern University, Chicago, IL 60611, USA

3Complex Systems Group, School of Physics, University of Sydney, Sydney, NSW 2006, Australia

“Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E6BT, UK

Effect of Network Structure on Population Synchronization in A Scale-Free Network of Bursting
Neurons

Sang-Yoon Kim, Woochang Lim*

Institute for Computational Neuroscience and Department of Science Education, Daegu National University of
Education, Daegu 705-115, Korea

Inter-areal and Inter-regional Inhomogeneity in Co-axial Anisotropy of Cortical Point Spread in
Human Visual Areas

Ryu Juhyoung*, Sang-Hun H Lee

Brain and Cognitive Science, Seoul National University, Seoul 151-742, Republic of Korea.

Two Bayesian Quanta of Uncertainty Explain the Temporal Dynamics of Cortical Activity in the
Non-Sensory Areas during Bistable Perception

Joonwon Lee*, Sang-Hun H Lee

Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-742, Korea

Optimal and suboptimal integration of sensory and value information in perceptual decision
making

Hyang Jung Lee*, Sang-Hun H Lee

Department of Brain and Cognitive Neuroscience, Seoul National University, Gwanak-gu, South Korea

A Bayesian Algorithm for Phoneme Perception and Its Neural Implementation
Daeseob Lim*, Sang-Hun H Lee

Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, South Korea

Complexity of EEG signals is reduced during unconsciousness induced by ketamine and propo-
fol

Jisung Wang*, Heonsoo Lee

Physics department, Pohang University of Science and Technology, Pohang, South Korea

Self-Organized Criticality of Neural Avalanche in a Neural Model on Complex Networks
Nam Jung, Le Anh Quang, Seung Eun Maeng, Tae Ho Lee, and Jae Woo Lee*

Department of Physics, Inha University, Namgu, Incheon 22212, Korea
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Dynamic alterations in connection topology of the hippocampal network during ictal-like epilep-
tiform activity in an in vitro rat model

Chang-Hyun Park™2*, Sora Ahn®, Jangsup Moon'2, Yun Seo Choi?, Juhee Kim?, Sang Beom Jun®4,
Seungjun Lee®, and Hyang Woon Lee'?

"Department of Neurology, Ewha Womans University School of Medicine, Seoul, Korea

2Department od Medical Science, Ewha Womans University School of Medicine, Seoul, Korea
3Department of Electronics Engineering, Ewha Womans University College of Engineering, Seoul, Korea
“Brain & Cognitive Sciences, Ewha Womans University College of Scranton, Seoul, Korea

Computational Model to Replicate Seizure Suppression Effect by Electrical Stimulation
Sora Ahn'*, Sumin Jo', Eunji Jun', Suin Yu', Hyang Woon Lee?, Sang Beom Jun', and Seungjun Lee’

"Department of Electronics Engineering, Ewha Womans University, Seoul, 120-750, Korea
2Department of Neurology, Ewha Womans University, Seoul, 120-750, Korea

Identifying excitatory and inhibitory synapses in neuronal networks from spike trains using
Sorted Local Transfer Entropy

Felix Goetze!2*, Pik-Yin Lai’

"Department of Physics, National Central University, Chung-Li, Taiwan, R.O.C.
2Taiwan International Graduate Program for Molecular Science and Technology, Institute for Atomic and Molecular
Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.

Neural network model for obstacle avoidance based on neuromorphic computational model of
boundary vector cell and head direction cell

Seonghyun Kim, Jeehyun Kwag*

Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea

Dynamic gating of spike pattern propagation by Hebbian and anti-Hebbian spike timing-
dependent plasticity in excitatory feedforward network model

Hyun Jae Jang, Jeehyun Kwag*

Dept. of Brain and Cognitive Engineering, Korea University, Seoul, Korea

Inferring characteristics of input correlations of cells exhibiting up-down state transitions in the
rat striatum

Marko Filipovic'-2*, Ramon Reig®, Ad Aertsen’?, Gilad Silberberg*, and Arvind Kumar'

"Bernstein Center Freiburg, Germany

2Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany

3Instituto de Neurociencias de Alicante, University of Alicante, Spain.

“Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden

°Dept. of Computational Science and Technology, School of Computer Science and Communication, KTH Royal
Institute of Technology, Stockholm, 10040, Sweden
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Graph properties of the functional connected brain under the influence of Alzheimer’s disease

Claudia Bachmann'*, Heidi Jacobs?%4, Kim Dillen®, Gereon Rudolf Fink®8, Juraj Kukolja®8, and Abigail
Morrison'7:8

"Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute I, Jilich Research Centre, Jilich, Germany

2Faculty of Health, Medicine and Life Science, School for Mental Health and Neuroscience (MHeNS), Alzheimer
Centre Limburg, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
3Department of Radiology & Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospi-
tal, Harvard Medical School, Boston, MA 02114, USA

“4Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX
616, 6200 MD Maastricht, The Netherlands

°Cognitive Neuroscience, Inst. of Neuroscience and Medicine (INM-3), Jillich Research Centre, Jilich, Germany
%Department of Neurology, University Hospital of Cologne, Cologne, Germany

”Computational Neuroscience, Bernstein Center Freiburg, Freiburg, 79104, Germany

8Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801 Bochum, Germany

Learning sparse representations in the olfactory bulb.
Daniel Kepple', Hamza Giaffar!, Dima Rinberg?, Stephen D Shea', and Alexei Koulakov'*

"Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
2NYU Neuroscience Institute, New York, NY 10016, USA

Functional classification of homologous basal-ganglia networks

Jyotika Bahuguna'-?3*, Tom Tetzlaff', Abigail Morrison'-?, Arvind Kumar?2, and Jeanette Hellgren Ko-
taleski®

!Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute I, Jilich Research Centre, Jiilich, Germany.

2Computational Neuroscience, Bernstein Center Freiburg, Freiburg, 79104, Germany.

3 Computational Brain Science, Dept. of Computational Science and Technology, School of Computer Science and
Communication, KTH, Royal Institute of Technology, Stockholm.

Short Term Memory Based on Multistability
Tim Kunze'?*, Andre Peterson®, and Thomas R. Knésche'

"Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2Institute of Biomedical Engineering and Informatics, llmenau University of Technology, limenau, Germany
3Department of Medicine, University of Melbourne, Melbourne, Australia

A physiologically plausible, computationally efficient model and simulation software for mam-
malian motor units

Minjung Kim, Hojeong Kim*

Division of loT and Robotics Convergence Research, DGIST, Daegu, 42988, Korea

High-resolution current source density reconstruction by Gaussian interpolation for microelec-
trode array analysis of hippocampal network dynamics following theta-burst stimulation

Hyun-Bum Kim', Oh-In Kwon?, and Sang-Seong Kim3*

"Department of East-West Medical, Graduate School of East-West Medical Science, Kyung Hee University,
Deogyeong-daero, Giheung-gu, Yongin 446-701, Republic of Korea

2Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
3Department of Pharmacy, Han Yang University, Hanyangdaehak-ro, Sannok-go, Ansan, Gyenggi-do, 15588, Re-
public of Korea
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Decoding laser-induced somatosensory information from EEG
Ji Sung Park*, Ji Won Yeon, and Sung-Phil Kim

Department of Human Factors Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798,
South Korea

Phase synchronization of alpha activity for EEG-based personal authentication
Jae-Hwan Kang, Chungho Lee, and Sung-Phil Kim*

Department of Human and Systems Engineering, Ulsan National Institute of Science and Technology, Ulsan, Re-
public of Korea

Altered small-world cortical network in patients with schizophrenia during an auditory oddball
paradigm task: an EEG study

Miseon Shim"2* Do-Won Kim', Seung-Hwan Lee?3, and Chang-Hwan Im’

"Department of Biomedical Engineering, Hanyang University, Seoul, Korea
2Clinical Emotion and Cognition Research Laboratory, Goyang, Korea
3Psychiatry Department, llsan Paik Hospital, Inje University, Goyang, Korea

— Withdrawn -
Investigating phase-lags in sEEG data using spatially distributed time delays in a large-scale
brain network model
Andreas Spiegler'*, Spase Petkoski'-?, Matias J. Palva®, and Viktor K. Jirsa’

"INSERM UMR 1106 Institut de Neurosciences de Systemes - Aix-Marseille Universite, Marseille, France
2 Aix-Marseille Universite, CNRS, ISM UMR 7287, 13288, Marseille, France
3Neuroscience Center, University of Helsinki, Helsinki 00014, Finland

Epileptic seizures in the unfolding of a codimension-3 singularity

Maria L. Saggio'*, Silvan F. Siep', Andreas Spiegler', William C. Stacey?, Christophe Bernard', and
Viktor K. Jirsa'

TINSERM UMR 1106 Institut de Neurosciences des Systemes - Aix-Marseille Universite, Marseille, France
2Dept of Neurology, Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Incremental dimensional exploratory reasoning under multi-dimensional environment
Oh-Hyeon Choung*, Yong Jeong
Department of Bio and Brain Engineering, KAIST, Dagjeon, 34141, South Korea

A low-cost model of eye movements and memory in personal visual cognition
Lee Yong-II'2, Jaeseung Jeong'-2*

"Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, 34141, South Korea

Complex network analysis of structural connectome of autism spectrum disorder patients
Su Hyun Kim'2*, Mir Jeong', and Jaeseung Jeong'?

"Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, Korea, 34141

2Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, 34141
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Cognitive motives and the neural correlates underlying human social information transmission,
gossip.

Jeungmin Lee'?*, Jaehyung Kwon', Jerald D. Kralik'-?, and Jaeseung Jeong'-?

"Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, 34141, Republic of Korea

2Program of Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Dagjeon, 34141, Republic of Korea

EEG hyperscanning detects neural oscillation for the social interaction during the economic
decision-making

Jaehwan Jahng'?*, Dong-Uk Hwang?, and Jaeseung Jeong'?

" Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, 34141, South Korea

2Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, 34141, South Korea

3Division of Computational Mathematics, National Institute for Mathematical Sciences (NIMS), Daejeon, 34047,
South Korea
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Tuesday Posters
Posters P136 — P201

Detecting purchase decision based on hyperfrontality of the EEG
Jaehyung Kwon'2*, Sang-Min Park'2?, and Jaeseung Jeong'?

" Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
South Korea, 34141

2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Dae-
jeon, South Korea, 34141

Vulnerability-based critical neurons, synapses, and pathways in the Caenorhabditis elegans
connectome

Seongkyun Kim*, Hyoungkyu Kim, Jerald D. Kralik, and Jaeseung Jeong

Department of Bio and Brain Engineering, Program of Brain and Cognitive Engineering, College of Engineering, Ko-
rea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, 34141

Motif analysis reveals functionally asymmetrical neurons in C. elegans
Pyeong Soo Kim*, Seongkyun Kim, Hyoungkyu Kim, and Jaeseung Jeong

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon
305-701, South Korea

Computational approach to Preference-Based Serial Decision Dynamics: Do Temporal Discount-
ing and Working Memory affect it?

Sangsup Yoon'-?*, Jaehyung Kwon'2, Sewoong Lim'-?, and Jaeseung Jeong'-?

"Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, 34141, South Korea

— Withdrawn -

Social stress induced neural network reconfiguration affects decision making and learning in
zebrafish

Choongseok Park'*, Thomas Miller?, Katie Clements?, Sungwoo Ahn®, Eoon Hye Ji*, and Fadi A. Issa®

"Department of Mathematics, North Carolina A&T State University, Greensboro, NC, 27411, USA
2Department of Biology, East Carolina University, Greenville, NC, 27858, USA

3Department of Mathematics, East Carolina University, Greenville, NC, 27858, USA

“David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA

Descriptive, generative, and hybrid approaches for neural connectivity inference from neural
activity data

Jeonghun Baek'*, Shigeyuki Oba’, Junichiro Yoshimoto®3, Kenji Doya?, and Shin Ishii’

" Graduate School of Informatics, Kyoto University, Yoshidahonmachi 36-1, Sakyo, Kyoto, Japan

2Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha,
Onna-son, Kunigami-gun, Okinawa, Japan

3Graduate School of Information Science, Nara Institute of Science and Technology,8916-5 Takayama, lkoma,
Nara, Japan
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Optimal tDCS electrode montages to stimulate nonsuperficial cortical regions: a simulation
study

Sangjun Lee, Chany Lee, and Chang-Hwan Im*

Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea

Contrast dependent phase sensitivity of complex cells in primary visual cortex
Hamish Meffin'?*, Markus Hietanen'-2, Shaun Cloherty'2, and Michael Ibbotson'?

"National Vision Research Institute, Australian College of Optometry, Corner Keppel and Cardigan Streets, Carlton,
VIC 3053, Australia.

2ARC Centre of Excellence for Integrative Brain Function, Department of Optometry and Vision Sciences, University
of Melbourne, Parkville, VIC 3010, Australia.

3 Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia.

Divergent-convergent synaptic connectivities accelerate coding in multilayered sensory sys-
tems

Thiago Mosqueiro', Martin Strube-Bloss?, Brian Smith®*, and Ramon Huerta’

"University of California San Diego, La Jolla CA, USA
2Biocenter University of Wiirzburg, Wiirzburg, Germany
3School of Life Sciences, Arizona State University, Tempe AZ, USA

Swinging networks
Michal Hadrava'-?3*, Jaroslav Hlinka?3

" Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, 166
27, Czech Republic

2Department of Nonlinear Dynamics and Complex Systems, Institute of Computer Science, The Czech Academy
of Sciences, Prague, 182 07, Czech Republic

3National Institute of Mental Health, Klecany, 250 67, Czech Republic

Inferring dynamically relevant motifs from oscillatory stimuli: challenges, pitfalls, and solutions
Hannah Bos'*, Moritz Helias-2

'Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute I, Jilich Research Centre, 52425 Jiilich, Germany
2Department of Physics, Faculty 1, RWTH Aachen University, 52074 Aachen, Germany

Spatiotemporal mapping of brain network dynamics during cognitive tasks using magnetoen-
cephalography and deep learning

Charles Welzig'*, Zachary J Harper'-2

"Departments of Neurology and Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
2College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA

Multiscale complexity analysis for the segmentation of MRl images
Won Sup Kim', In-Seob Shin', Hyeon-Man Baek?, and Seung Kee Han'*

" Department of Physics, Chungbuk National University, Cheongju, Chungbuk 28644, Rep. of Korea
2Korea Basic Science Institute, Cheongju, Chungbuk 28119, Rep. of Korea
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A neuro-computational model of emotional attention
René Richter'*, Julien Vitay', Frederik Beuth', and Fred Hamker'-?

" Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
2Bernstein Center for Computational Neuroscience, Charité University Medicine, Berlin, Germany

Multi-site delayed feedback stimulation in parkinsonian networks
Kelly Toppin, Yixin Guo*
Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Bistability in Hodgkin-Huxley-type equations
Tatiana Kameneva'*, Hamish Meffin?, Anthony Burkitt', and David B Grayden'3

"NeuroEngineering Laboratory, Dept. Electrical & Electronic Engineering, University of Melbourne, Parkville, VIC
3010

2National Vision Research Institute, Australian College of Optometry, Carlton, VIC 3053

3Centre for Neural Engineering, University of Melbourne, Parkville, VIC 3010

Phase changes in postsynaptic spiking due to synaptic connectivity and short term plasticity:
mathematical analysis of frequency dependency

Mark D McDonnell'*, Bruce Graham?

"Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical
Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
2Computing Science & Mathematics, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK

Quantifying resilience patterns in brain networks: The importance of directionality
Penelope Kale, Leonardo L Gollo*
Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, AUS

Dynamics of rate-model networks with separate excitatory and inhibitory populations
Merav Stern'*, L F Abbott?

"Faculty of Medicine, Technion, Haifa, Israel.
2Department of Neuroscience and Department of Physiology and Cellular Biophysics, Columbia University, New
York, USA.

A model for multi-stable dynamics in action recognition modulated by integration of silhouette
and shading cues

Leonid Fedorov'2*, Martin Giese'2

"Section for Computational Sensomotorics, Dept. Cognitive Neurology, CIN&HIH, Tiibingen, Germany
2GTC, International Max Planck Research School, University of Tiibingen, Tiibingen, Germany

Spiking model for the interaction between action recognition and action execution
Mohammad Hovaidi Ardestani'-2, Martin Giese'*

"Section Computational Sensomotorics, CIN & HIH, Department of Cognitive Neurology,
2IMPRS for Cognitive and Systems Neuroscience, University Clinic Tilbingen, Tiibingen, 72076, Germany
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Surprise-modulated belief update: how to learn within changing environments?
Mohammadjavad Faraji'*, Kerstin Preuschoff?, and Wulfram Gerstner’

School of Life Sciences, Brain Mind Institute and School of Computer and Communication Sciences, Ecole Poly-
technique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

2Geneva Finance Research Institute (GFRI) and Swiss Center for Affective Sciences (CISA), University of Geneva,
CH-1211 Geneva, Switzerland.

A fast, stochastic and adaptive model of auditory nerve responses to cochlear implant stimula-
tion

Margriet van Gendt'*, Jeroen Briaire!, Randy Kalkman', and Johan Frijns'-2

"ENT-Department, Leiden University Medical Centre, Leiden, 2300 RC, the Netherlands
2] eiden Institute for Brain and Cognition, Leiden, 2300 RC, the Netherlands

Quantitative comparison of graph theoretical measures of simulated and empirical functional
brain networks

Won Hee Lee*, Sophia Frangou
Department of Psychiatry, lcahn School of Medicine at Mount Sinai, New York, NY 10029, USA

Determining discriminative properties of fMRI signals in schizophrenia using highly comparative
time-series analysis

Ben D Fulcher*, Patricia Tran, and Alex Fornito

Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Vic 3168, Australia

Emergence of narrowband LFP oscillations from completely asynchronous activity during
seizures and high-frequency oscillations

Stephen Gliske!, William C Stacey'?, Eugene Lim3, Katherine Holman*, and Christian Fink35*

" Department of Neurology, University of Michigan, Ann Arbor, MI 48104, USA
2Department of Biomedical Engineering, University of Michigan, Ann Arbor, Ml 48104, USA
3Department of Physics, Ohio Wesleyan University, Delaware, OH 43015, USA
“Department of Physics, Towson University, Towson, MD 21252, USA

SNeuroscience Program, Ohio Wesleyan University, Delaware, OH 43015, USA

Neuronal diversity in structure and function: cross-validation of anatomical and physiological
classification of retinal ganglion cells in the mouse

Jinseop S Kim'-2*, Shang Mu?, Kevin L. Briggman?®, H. Sebastian Seung®*, and The Eyewirers®

’Departmem‘ of Structure and Function of Neural Networks, Korea Brain Research Institute, Daegu 41068, Republic
of Korea

2Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA

3 Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes
of Health, Bethesda, MD 20824, USA

4Computer Science Department, Princeton University, Princeton, NJ 08544, USA

°http://eyewire.org

Analysis and modelling of transient firing rate changes in area MT in response to rapid stimulus
feature changes

Detlef Wegener'*, Lisa Bohnenkamp'2, and Udo A Ernst?

' Brain Research Institute, University of Bremen, 28334 Bremen, Germany
2Institute for Neurophysics, University of Bremen, 28334 Bremen, Germany
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Step-wise model fitting accounting for high-resolution spatial measurements: Construction of a
layer V pyramidal cell model with reduced morphology

Tuomo Maki-Marttunen'*, Geir Halnes?, Anna Devor®#, Christoph Metzner®, Anders Dale®#, Ole An-
dreassen', and Gaute T. Einevoll>®

"NORMENT, Institute of Clinical Medicine, University of Oslo, Norway

2Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, Norway
3 Department of Neurosciences, University of California San Diego, La Jolla, CA, USA

“Department of Radiology, University of California San Diego, La Jolla, CA, USA

>Biocomputation Research Group, University of Hertfordshire, Hatfield, UK

6Department of Physics, University of Oslo, Norway

Contributions of schizophrenia-associated genes to neuron firing and cardiac pacemaking: a
polygenic modeling approach

Tuomo Maki-Marttunen'*, Glenn Lines?, Andy Edwards?, Aslak Tveito?, Anders Dale®, Gaute T.
Einevoll*, and Ole Andreassen’

"NORMENT, Institute of Clinical Medicine, University of Oslo, Norway

2Simula Research Laboratory and Center for Cardiological Innovation, Oslo, Norway

3Multimodal Imaging Laboratory, UC San Diego, La Jolla, CA, USA

“Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, Norway

Local field potentials in a 4x4 mm2 multi-layered network model
Espen Hagen'*, Johanna Senk’, Sacha Jennifer van Albada', and Markus Diesmann'-23

'Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute 1, Jilich Research Centre, Jiilich, 52425, Germany

2Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University,
Aachen, 52074, Germany

3Department of Physics, Faculty 1, RWTH Aachen University, Aachen, 52074, Germany

A spiking network model explains multi-scale properties of cortical dynamics

Maximilian Schmidt'*, Rembrandt Bakker'?, Kelly Shen3, Gleb Bezgin*, Claus-Christian Hilgetag®®,
Markus Diesmann'-"8 and Sacha Jennifer van Albada’

'Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), and JARA BRAIN
Institute 1, Jilich Research Centre, Jiilich, Germany

2Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands

3Rotman Research Institute, Baycrest, Toronto, Ontario M6A 2E1, Canada

“McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
°Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, Germany

6 Department of Health Sciences, Boston University, USA

"Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University,
Aachen, Germany

8Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Using joint weight-delay spike-timing dependent plasticity to find polychronous neuronal groups
Haogi Sun'235* Olga Sourina®®, Guang-Bin Huang®®, Felix Klanner*>, and Cornelia Denk®

"Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School

2Fraunhofer IDM @ NTU

3School of Electrical and Electronic Engineering

“School of Computer Engineering

SFuture Mobility Research Lab, A Joint Initiative of BMW Group, Nanyang Technological University, Singapore
639798
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Tensor decomposition reveals RSNs in simulated resting state fMRI
Katharina Glomb'*, Adrian Ponce-Alvarez', Matthieu Gilson', Petra Ritter?345, and Gustavo Deco'®

"Center for Brain and Cognition, Universitat Pompeu Fabra, 08018 Barcelona, Spain

2Minerva Research Group Brain Modes, Max Planck Institute for Human Cognitive and Brain Sciences, 04103
Leipzig, Germany

3Dept. of Neurology, Charité - University Medicine, 10117 Berlin, Germany

“Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, 10115
Berlin, Germany

°Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt University, 10117 Berlin, Germany
SCatalan Institution for Advanced Studies (ICREA), Universitat Barcelona, 08010 Barcelona, Spain

Getting in the Groove: testing a new model-based method for comparing task-evoked vs resting-
state activity in fMRI data on music listening

Matthieu Gilson'*, Maria Ag Witek?, Eric F Clarke®, Mads Hansen*, Mikkel Wallentin®, Gustavo Deco',
Morten L Kringelbach?®8, and Peter Vuust®®

" Center for Brain Cognition, Universitat Pompeu Fabra, Barcelona, Spain

2Center for Music in the Brain, Aarhus University & Royal Academy of Music, Aarhus/Aalborg, Denmark
3Faculty of Music, University of Oxford, UK

“Department of Psychology and Behavioural Sciences, Aarhus University, Denmark

SCenter of Functionally Integrative Neuroscience, Aarhus University, Denmark

5Department of Psychiatry, University of Oxford, UK

STochastic Engine for Pathway Simulation (STEPS) on massively parallel processors
Guido Klingbeil*, Erik de Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son,
Kunigami-gun, Okinawa 904-0495, Japan

Toolkit Support for Complex Parallel Spatial Stochastic Reaction-Diffusion Simulation in STEPS
Weiliang Chen*, Erik de Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0411, Japan

Modeling the generation and propagation of Purkinje cell dendritic spikes caused by parallel
fiber synaptic input

Yunliang Zang*, Erik de Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son,
Okinawa, Japan

Dendritic morphology determines how dendrites are organized into functional subunits
Sungho Hong*, Akira Takashima, and Erik de Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son,
Okinawa 904-0495, JAPAN

A model of Ca2+/calmodulin-dependent protein kinase Il activity in Long Term Depression at
Purkinje cells

Criseida Zamora*, Andrew R Gallimore, and Erik de Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa
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