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Shadlen and Newsome, 1998 

Fano factor,   F = Var(N) / <N>  constant  
for at least two orders of magnitude in firing rate 

 
‘Poisson-like’ firing 

Cortical spiking variability  
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Why should we care about 
variability and correlations? 

 



This is why you should care 
• variability and correlations set fundamental limits on how much information 
can be extracted from the neuronal responses  
 

Zohary et al, Nature, 1994 
Shadlen and Newsome, J. of Neurosci., 1998 
 
 
• how the observed variability and correlations arise from the underlying 
neuronal dynamics is largely unknown  
 

-pairs of cells: 
Moreno-Bote and Parga, Phys. Review Letters, 2006 
de la Rocha et al, Nature, 2007 
Schultze-Kraft et al, Plos Comp. Biol., 2013 
 
-networks: 
Ginzburg and Sompolinsky, Phys. Review E, 1994 
Renart et al, Science, 2010 
Hertz, N. Computation, 2010 
Tetzlaff et al, Plos Comp. Biol., 2012 
Helias et al, Plos Comp Biol, 2014 
Moreno-Bote et al, Nat. Neurosc., In Press, 2014 



This is why you should care 

• correlations open the door to estimate functional connectivity between 
neurons 
 

Aertsen et al, J. Neurophys, 1989 
Schneidman et al, Nature, 2006 
Pillow et al, Nature, 2008 
Cocco et al, PNAS, 2009 
 
 

• variability and correlations might indicate the type of neuronal 
computations carried out by neuronal circuits  
 

Abeles, Book: Corticonics, 1991 
Softky, Current Opi. Neurobiology, 1995 
Shadlen and Newsome, J. of Neurosci., 1998 
Ma et al, Nature Neurosci., 2006 
Moreno-Bote et al, PNAS, 2010 
Moreno-Bote, Plos Comp Biology, 2014 
 



Neuron 

Input Output 

The problem can be faced in the statistical sense using average quantities 

in out

,N inF ,N outF

This is why you should care: the  
input-output relationship is a Golden Problem  
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This is why you should care: the  
input-output relationship is a Golden Problem  



Outline 
• Information limits set by neuronal correlations (an example) 

 
• Firing rate and variability in LIF neurons with fast and slow synapses 

(FPE formalism and solutions) 
 

• Correlation transfer in LIF neurons with fast and slow synapses (FPE 
and approximate solutions) 
 

• Review of literature & main results about correlation transfer: 
 

1. Neurons are sensitive to input correlations (strength and correlation time; 
Salinas and Sejnowski, J. of Neurosci., 2000; Moreno-Bote et al, Phys. Review Letters, 
2002) 
 

2. Output correlation is lower than input correlation in spiking neurons (Moreno-Bote 
and Parga, Phys. Review Letters, 2006) 
 

3. Firing rate and correlation coefficients are not independent (de la Rocha et al, 
Nature, 2007) 

 
• Open questions 
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Signal/Noise limits induced by correlations 

decorrelation 
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• In homogenous neuronal populations, correlations are deleterious 
• Whether decorrelation improves information is unknown (but await to the 2nd 
half of the tutorial!) 
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Firing rate for a leaky integrate & fire (LIF)  
neuron with instantaneous synapses 
 

Burkitt, Biol Cybern, 2006 



In the long synaptic time scale limit  
we treat                 as a small parameter  
 
This limit is useful in the high conductance regime  
(Destexhe et al.,Nat.Rev.Neurosc. 2003)  
or when slow filters (NMDA, GABAB, etc) are important 
  

Rate with non-instantaneous synapses 
Fast neuronal dynamics 

s m 

stationary FPE 

Moreno-Bote and Parga, Phys Rev. Lett, 2004 
Moreno-Bote and Parga, Neural Computation, 2010 

firing rate 



leak 
constant drift 

At first order 

  z 

 

The only approx. is s ≥ m  

Firing rate 

Rate with non-instantaneous synapses 



here s = m = 10ms 

This is surprising because here z(t) is not 
constant during an ISI of typical duration 
T = 100-200 ms. z(t) 

T=1/ 

s 

Rate with non-instantaneous synapses 



instantaneous firing rate 

z, constant 

temporal 
   average 

firing rate 

Why not                                             ? 
 
It does not do a very good job ISI for fixed z 

Rate with non-instantaneous synapses 



Rate with non-instantaneous synapses 
Fast synapses 
 

In the short  synaptic time scale limit  
we treat the inverse of                 as a small parameter  
 
This limit is useful when AMPA receptors are abundant 
  

s m 

firing rate 

2  1 .4 6 . . .

Interpolating the fast and slow synaptic 
time scale limits 

Brunel and Sergi, J theor Biol, 1998 
Fourcaud and Brunel, Neural Comput.,  2002 
Moreno-Bote and Parga, Phys Rev Lett, 2004 
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Correlations with non-instantaneous synapses 
 

Moreno-Bote and Parga, Phys Rew Lett, 2006 
Moreno-Bote and Parga, Neural Comput, 2010 

, 



Correlations with non-instantaneous synapses 
 

Moreno-Bote and Parga, Phys Rew Lett, 2006 
Moreno-Bote and Parga, Neural Comput, 2010 



Correlations with instantaneous synapses 

de la Rocha et al, Nature, 2007 
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deCharms and Merzenich, 1996 

Exponential-like correlations 

Correlated activity in primary auditory cortex 

50 ms 



Model. The total presynaptic current 

Post-synaptic Neuron 
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I 

Leaky Integrate-and-Fire neuron 



Auto-correlations:  

Cross-correlations: 

j, q=E,I 

i, p=E,I 

Model. Temporal Correlations 

corr. 
time 

rate Fano factor 

correlation coefficient 
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Post-synaptic Neuron 

Model. Spatial Correlations 
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Results. Properties of the syn. current 

Post-synaptic Neuron 

correlation magnitude 

correlation time white noise variance 

mean current 
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I 



Results.  and c 

correlation time correlation magnitude 



How to generate such a current? 

Why a simple representation of  the current  is required? 
 
1.  Generating the current in the way defined above is complex. 
 
2.  If the representation of the current is simple enough, it can 
     allow us to find an analytical solution in some limits. 
 
3.  It can be used to simulate neurons receiving correlated inputs. 

 
4.  It can be used to stimulate real neurons with current waves  
     mimicking correlated inputs. 

 
 



Results. Generating I(t) using an auxiliar OUP 

Positive correlations Negative correlations 

>0 

<0 

Moreno et al, PRL, 2002 



Results. The FPE and the firing rate 

The FPE associated to the equation for V and the current is 

It can be solved in the long correlation time limit 

The FPE is also solved in the short correlation time limit 

Interpolation 



Results. Stationary rate as a function of c 

>0 

<0 

=0 



Results. Non-stationary response. 
    Fast responses predicted by the FPE 

The instantaneous firing rate of the neuron is exactly 

When the correlation time becomes zero, it can be expressed as 

Changing              will procude an instantaneous change in the rate 

Changing it will procude an instantaneous change in the rate 

For short enough correlation times, the response has also to be very fast! 



Results. Rapid response to  
          instantaneous changes of  

Silberberg et al, 2004 



 … in conclusion 

1.  We have described the statistical properties of a current that 
      considers the acitivity of many correlated neurons. 
 
2. This current has been generated using an auxiliary OU process. 

 
3. The associated FPE to this current and to an IF neuron has 
      been solved in the limits of short and long correlation times. 
 
4. These solutions predict the modulation of neuronal resposes  
      to variations of the parameters defining the correlated activity. 
 
5. Changing the correlation magnitude of pre-synaptic populations 
      produces a very fast increase of the output firng rate. 



Weak effects of correlations on firing rate? 



Strong effects correlations on rate and CV 



Weak effects of correlations on firing rate? 
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Correlation coefficient: 

Slow rise with slope 
smaller than 1 

To get =0.1, neurons need 
to share around 20% of their  
input variability 

input correlation, or 
fraction of common noise 
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Lower output correlations than in the inputs 



Lancaster, Biometrika, 1957 

The correlation coefficient of the output of a pair of non-linear rate neurons 
receiving correlated Gaussian noise is bounded by the correlation in the input: 
in the picture, the blob surviving in the first quadrant is less elongated that the 
original Gaussian distribution, leading to lower correlation in the output  
than in the input  

Lower output correlations than in the inputs:  
intuition and generality of the result 



Low fraction of common noise Large fraction of common noise 

2

2 1c
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sub- 
threshold 

supra- 
threshold 

-A single peak in both sub- and 
supra-threshold regimes 
-Width of the peak is approx. s 

-Damped oscillatory profile 
in both regimes 
-Width is not simply related to s 

The shape of the cross-correlation function 
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Output correlation increases with output firing rate 

Correlations increase with firing rate 
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Open questions 
• The Fokker-Planck equation (FPE) for a pair of correlated neurons 

remains unsolved exactly for any limit  
 (however, very good approximations are available in some limits, as 

described in this tutorial) 
 

• How correlation transfer operates in more complex neuronal models 
(e.g., Hodgkin & Huxley) is not known 

 
• How correlation transfer depends on reciprocal connections deserves 

further research (but await to the 2nd part of the tutorial) 
 

• The role of (active) dendrites in synchronization is largely unknown 
 

• The relationship between correlations and information in neuronal 
networks remains unexplored 
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How strong are correlations in cortex? 

Smith and Kohn, 2008 

rsc  ~ 0.1 

Ecker et al, 2010 

rsc ~  0.01 



Signal/Noise limits induced by correlations 
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Does this improve 

information? 
 



Signal/Noise limits induced by correlations 
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• Decorrelation appears to be an universal recipe for increasing information 
• But is it really so? 
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Correlations in neuronal networks 

E 

I 

E, input 
N 

N 
N 

Ginzburg and Sompolinsky, 1994 
Kriener et al, 2008 
Kumar et al, 2008 
Renart et al, 2010 
Hertz, 2010 
Helias et al, 2014 



1Correlation = scr
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asynchronous regime 

Correlations in neuronal networks 



Correlations in binary networks in 
the thermodynamic limit 

Renart et al, 2010 (see also Hertz 2010 and Helias et al, 2014) 
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However…  

asynchronous regime 

Correlations in neuronal networks 
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However… 
 
this decorrelation mechanism has been shown to work only when input 
information increases without bound as the size N increases. 

1Correlation = scr
N

 asynchronous regime 

Correlations in neuronal networks 
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Correlations in neuronal networks 



Networks with finite input information 

 



Kaskan et al, 2005 

Retina vs. brain evolution across mammals 



Retina and brain evolution in primates 

Kremers, The primate visual system: a comparative approach 



Networks with finite input information 
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Networks with finite input information 
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N fixed 

Questions:  
 

• does decorrelation improve information? 
 

• what type of correlations limit information? 
 



Outline 
 

• Spiking neuronal networks transmit virtually all input information 
 

• Noise decorrelation does not imply information improvement  
 
• Shared connectivity does not limit information 

 
• The only information-limiting correlations are differential correlations, 

proportional to the product of the derivatives of the tuning curves: ffT 
 

• Correlations in any other direction does not affect information for large 
neuronal populations 
 
 

 
Moreno-Bote et al, Nature Neuroscience, In Press, 2014 



Coding and decoding in a spiking network 
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Coding and decoding in a spiking network 

shared noise 
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Coding and decoding in a spiking network 
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The size of correlations does not matter 
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Signal/Noise limits induced by correlations 
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Outline 
 

• Spiking neuronal networks transmit virtually all input information 
 

• Noise decorrelation does not improve information  
 
• Shared connectivity does not limit information 

 
• The only information-limiting correlations are  differential correlations, 

proportional to the product of the derivatives of the tuning curves: ffT 
 

• Correlations in any other direction does not affect information for large 
neuronal populations 
 
 
 

Moreno-Bote et al, Nature Neuroscience, In Press, 2014 



Shared connectivity  
does not limit information 

Shadlen and Newsome, 1998 
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Moreno-Bote et al, Nature Neuroscience, In Press, 2014 



Limiting-information correlations: f’f’T 
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Limiting-information correlations 
can be very weak but important 
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Conclusions 
 

• Spiking neuronal networks transmit virtually all input information 
 

• Noise decorrelation does not imply information improvement  
 
• Shared connectivity does not limit information 

 
• The only information-limiting correlations are  differential correlations, 

proportional to the product of the derivatives of the tuning curves: ffT 
 

• Correlations in any other direction does not affect information for large 
neuronal populations 
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How strong are correlations in cortex? 

Smith and Kohn, 2008 

rsc  ~ 0.1 

Ecker et al, 2010 

rsc ~  0.01 

<ffT >=0 
differential correlations cannot be seen in average correlations 



Detecting differential correlations 
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differential correlations can be detected by their 
effects on information 



Conclusions 
 

• Spiking neuronal networks transmit virtually all input information 
 

• Noise decorrelation does not improve information 
 

• Shared connectivity does not limit information 
 

• The only information-limiting correlations are differential 
correlations, proportional to the product of the derivatives of the 
tuning curves: ffT 
 

• Correlations in any other direction does not affect information for large 
neuronal populations 
 

• Differential correlations can be very weak, almost unnoticeable at the 
correlation level, but their effect can be seen at the information level 
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