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Overall plan for tutorial

9.00-9.50: Lecture 1 (Gaute)
9.50-10.05: Break

10.05-10.55: Lecture 2(Gaute & Szymon)
10.55-11.10: Break

11.10-12.00: Lecture 3 (Szymon)
12.00-13.00: Lunch break

13.00-: Tutorials (Espen & Szymon)



Physiological measures of neural activity

Membrane potential

Voltage-sens. die imaging (VSDI)

Spike

—
\ Intrinsic optical imaging

Local field potential (LFP)

Two-photon calcium imaging

Multiunit Activity (MUA)

Functional MRI

EEG

MEG

PET

e | ook for correlations between measurements
and stimulus/behavior

* Typical multimodal analysis: Look for
correlations between different experiments




Physics-type multimodal modeling

VSDI: Weighted sum
over membrane
potentials close to
cortical surface

LFP,EEG,MEG:

Weighted sum over
transmembrane
currents all over

neuron

Spike, MUA: Weighted
sum over transmembrane
currents in soma region

* Need to work out mathematical connections between neuron dynamics
and different experimental modalities (”measurement physics”)



’Modeling what you can measure’

A candidate model for, say, network dynamics in a cortical column
should predict all available measurement modalities

* A | e
‘+‘$\>‘¢>‘ | : Voltage-sensitive dye imaging :
A-- <+ | Two-photon calcium imaging | |
AvAATAL | | proton et inagine 1. |

 And we need neuroinformatics
tools to make this as simple as
possible

GLITY

LolF 1d Potentials in Python

http://compneuro.umb.no/LFPy
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Measuring electrical potentials in the brain

 Among the oldest and (conceptually) simplest
measurents of neural activity

 Richard Caton (1875): Measures electrical potentials
from surfaces of animal brains (ECoG)

RECORDING
ELECTRODE REFERENCE

ELECTRODE

W M“MN m FAR AWAY

/

PIECE OF CORTEX




Typical data analysis

» Recorded signal split into two frequency bands:
» High-frequency band (>~ 500 Hz): Multi-unit activity (MUA),
measures spikes in neurons surrounding electron tip
» Low-frequency band (<~300 Hz): Local field potential (LFP),
measures subthreshold activity

500H -
P21 Spikes -

Filter

LFp | ¥

1-100 Hz - t

« LFP often discarded

* Sometimes used for current-source density
(CSD) analysis with laminar-electrode
recordings spanning cortical layers

—al




Revival of LFP in last decade

 LFP is unique window into
activity in populations
(thousands) of neurons

* New generation of silicon-
based multielectrodes with up
to thousands of contacts offers
new possibilities

» Candidate signal for brain-
computer interfaces (BCl);
more stable than spikes




Rat whisker system:

laminar electrode recordings
(Anna Devor, Anders Dale, UC San Diego;
Istvan Ulbert, Hungarian Acad. Sci, Budapest)
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Laminar electrode recordings from rat
barrel cortex - single whisker flick
top of q;#

cortex
Measure of

Low-pass filter dendritic
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Einevoll et al, J Neurophysiol 2007



Physical origin of LFP and MUA

 Source of extracellular potential: Transmembrane currents

REFERENCE <« EXTRACELLULAR RECORDING
ELECTRODE pm ELECTRODE

FAR AWAY \

(©=0)

current sink: |, (t)
/

/

PIECE OF NEURAL TISSUE \
current source: |5(t)

L(t) I
FORWARD SOLUTION:  6(t) = 4;((3 - 4;((7?
1 2

o extracellular conductivity



Note: Current monopoles do not exist

/

current sink: 1,(t)

« Conservation of electric charge requires
(capacitive currents included!):

TR
\ current source: |,(t)=-1,(t)
It) I
Adrory  4mors

ho+no-o| ™= | o)

e From far away it looks like a current dipole
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Assumptions underlying:

(1)

I(t)

I(t)

Arory  4dmwors

|. Quasistatic approximation to Maxwell’s equations

V- E =

- sufficiently low frequencies so that electrical and
magnetic fields are decoupled (OK for f < 10 kHz)

- here: not interested in magnetic fields

- then:

VXE=0

p—

E

. v
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) 1)

Assumptions underlying: o(t) = -

Arory 4dmors

ll. Coarse-grained extracellular medium described by
extracellular conductivity c

(o) — :
1, (1)
|
] d(t)
1,(0) \
o & %
HOR\
‘ Iy §
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Assumptions underlying: B(t) = -

Ao Ao
[ll. Linear extracellular medium
J = aE
j: current den51ty A/m2) E electric field (V/m)

V. Extracellular medium is
1. Ohmic
2. homogeneous
3. frequency-independent
4, isotropic
15



_ I 1)

Amory  4dmors

Assumptions underlying: |¢(!)

IV.1: Ohmic: o is real, that is, extracellular medium is
not capacitive

e OK

IV.2: Homogeneous: o is the same at all positions

 OK inside cortex, but lower o in white matter

e Formula can be modified my means of «method of images»
from electrostatics

IV. 3: Frequency-independent: ¢ is same for all frequencies

« Probably OK (I think), but still somewhat debated

e But if frequency dependence is found, formalism can easily be
adapted
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_ I 1)

Arory  4dmors

Assumptions underlying: |¢()

IV.4 Isotropic: o is the same in all directions

- 0 is in general a tensor
(Gx )Gy ’O-z)

- Easier to move along
apical dendrites than
across (o, > o,and o,)

- Cortex: o0, -~ 1-1.5 g, ,

 Generalized formula:

I(t) 1(t)

47T\/O'y0'z$% + Jzamy? — O':BO'yZ% 47T\/0'y0'z$% — O‘zdmy% + crwayzg
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Forward-modeling
formula for
multicompartment
neuron model

® | © | © | e | @ | © | © | ® |

Current conservation:

Y I(t)=0




Inverse electrostatic solution

transmembrane currents

e No charge pileup in \

extracellular medium: \

V’jtot =V (JE_l—js) =0

e Inverse
solution:

N
3
)
2
-
|
-
S
S
>
Xy
3y
\%.].
e
2

 Forward b(r,b) = 1 Z | I (%)

solution:



Current source density

« Neural tissue is a spaghetti-
like mix of dendrites, axons,
glial branches at micrometer

scale

 In general, the
extracellular potential
will get contributions from

a mix of all these

e Current source density (CSD) [C(x,V,z)]: density of
current leaving (sink) or entering (source) extracellular

medium in a volume, say, 10 micrometers across [A/m?3]
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Electrostatic solution for CSD

1
Vi¢=-V-E=_V_]j,

« Definition of CSD: C=-V-js

e Inverse 1
solution: VQCb(ma Y, Z) — _;O(ajaya z)

« Forward . 1 Cl', v, z')
. P(r,y,z) = — f d'dy dz
solution: dma ) J@— 22+ (y—y)2 + (2 — /)2



Generalization to cases with
position- and direction-dependent ¢

e Generalized Poisson equation:
V(U(I‘)qu(r,t)) — —C(r, 1)

e Can always be solved with Finite Element Modeling (FEM)

« Example use: Modeling of MEA experiments (slice, cultures)
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Handbook of
Neural Activity
Measurement

CAMBRIDGE

New

book

Chapter on modeling of
extracellular potentials:

4

Extracellular spikes and CSD

KLAS H. PETTERSEN, HENRIK LINDEN, ANDERS M.
DALE AND GAUTE T. EINEVOLL

4.1 Introduction

Extracellular recordings have been, and still are, the main workhorse when measur-
ing neural activity in vivo. In single-unit recordings sharp electrodes are positioned
close to a neuronal soma, and the firing rate of this particular neuron is measured by
counting spikes, that is, the standardized extracellular signatures of action poten-
tials (Gold et al., 2006). For such recordings the interpretation of the measurements
is straightforward, but complications arise when more than one neuron contributes
to the recorded extracellular potential. For example, if two firing neurons of the
same type are at about the same distance from their somas to the tip of the record-
ing electrode, it may be very difficult to sort the spikes according to from which
neuron they originate.

The use of two (stereotrode (McNaughton et al., 1983)), four (tetrode (Recce and
O’Keefe, 1989; Wilson and McNaughton, 1993; Gray et al., 1995; Jog et al., 2002))
or more (Buzsdki, 2004) close-neighbored recording sites allows for improved

23



Forward-modeling
formula for
multicompartment
neuron model

® | © | © | e | @ | © | © | ® |

Current conservation:

Y I(t)=0




Multicompartmental modeling scheme

« Example dendritic segment
[non-branching case]:

Vi Vi Vies
( !
~ -— o
e Kirchhoff’s current law ¢
("currents sum to zero”): transmembrane current
dV; ’ .
gi,i+1 z+1 —Gi— 1z V v = Cz V V +ZI +ZI
CURRENTS TO PASSIVE /
NEIGHBOURING MEMBRANE  ACTIVE MEMBRANE SYNAPTIC

CURRENTS CURRENTS
25
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Forward modelling
of spikes

What does an action
potential look like as seen by
an extracellular electrode?

[neuron model from
Mainen & Sejnowski, 1996]

From Henze et al (2000):
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How does the
extracellular
sighature of action
potentials depend

on neuronal morphology? e

ball-and-bush

ball-and-cloud stellate L4

Pyramidal L5 and stellate L4
from Mainen & Sejnowsky (1996)

o Amplitude is (i) roughly proportional to sum of
cross-sectional areas of dendrites connected to
soma, (ii) independent of membrane resistance R, . amplitude

o Spike width increases with distance from soma,
i.e., high-frequency dampening also with simple spike width
ohmic extracellular medium

Pettersen & Einevoll, Biophysical Journal 2008 27



Spike sorting problem —

« Electrodes pick up signals
from many spiking neuron

must be sorted

« At present spike so
o labor intensive
o unreliable

e Need automated sj
sorting methods whic

O accurate

o reproducible
o reliable

o validated

o fast

to take advantage of
generation of multiel

*Quian Quiroga et al-.'?IZOOS
\

28
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(a) Neural population

/ ) Channel 2

Channel 3

Channel 4
III /‘
Tetrode _J
b Neuron 2
NI l
Neuron 3
® (0] neuron 1

¥,

Somatic Potentials

"
| N

Unit 2

Unit 3 |

Steps in spike sorting

(b) Raw data
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Einevoll et al, Current Opinion Neurobiology 2012



Test data for spike-sorting algorithms

T
W
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0 f ' L -
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o (Can make test data of abitrary complexity by, for example,

(1) varying dendritic morphologies
(11) vary spike shapes

(111) include adapting or bursting neurons

(iv) add arbitrary recorded or modeled noise
(v) tailor correlations in spike times across neurons

31



 Collaborative effort on development and validation of suitable
automatic spike-sorting algoritms needed

 Collaborate website shosted by G-

nOde, the German nOde Of the 4 . f International Neuroinformatics
International Neuroinformatics TNCT oo ey
Coordinating Facility (INCF)

http://www.g-node.org/spike

Available online at www.sciencedirect.com Current Opinion in

ScienceDirect Neurobiology

el
ELSEVIER

Towards reliable spike-train recordings from thousands of
neurons with multielectrodes

Gaute T Einevoll', Felix Franke?, Espen Hagen', Christophe Pouzat® and
Kenneth D Harris*®

Current Opinion in Neurobiology, 2012
32



e Poster on Tuesday: P143

Contict:

Modeling realistic extracellular spiking activity for the purpose of testing automated spike-sorting algorithms

Espen Hagen!, Amir Khosrowshahi'-?, Torbjern B. Ness', Felix Franke?, Gaute T. Einevoll!

1 . of Mathematical Sciences and Technology, N ian Unive of Life Sciences (UMB), As, Norway. ZRed
Dept. ogy, Norwegi rsity (UMB), As ¥,

L Background
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ing Lat y, ETH Ziirich, Basel, Switzerland.

.r"c—&"rﬁéurﬂlln 5
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*  point electrodes Contact size primarily affects soike amplitude + = Ring network topology”, for every 4 excitatoryceliwe + «  Electrade confl il h tetrode * filters applied
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‘W utilize multicompartment neuron madels to
generate plausible extraceliular spike recordings
Test-data provided an www.g-node.org/spike

Forward modeling of LFPs

= Tools and assumptions:

jiLioy =

=ty

L¥ Py is an integrated simulation framewark built
using NEUROH 2z an extension to Bythan?
Poisson’s equation relate electric charges and
potential in conductive madia
The patential fram a point current source i

L)

dra, |7
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il

Exteacelldar potential (EP] calculatians assume line-
saurces! for all membrane currents calculated using
NEURDN'. EPs from N-Compartment neurons are
obtained by integrating the paint source equation’
along each memumnt i

Lt
DiF.0) = Z o
=1
Contributions fmm different cells are wpcnmpuscd’
*  In case of MEAs, we deal with inhomogeneous
extracoBislar media using Finite Element Methods,
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amplinade.

*  From experimental data generate nolse with
similar power spectral density [PSD)
kil frequency-dependent covasiance

o
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* The spike times used for ground truth are
extracted from the somatic traces
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*  The test data can be made arbitrarily difficuls in tesms.
of gverlapping spikes, signal-to-noise ratio etc.

[ ——

T =t et

Fig 11 Mhisteation of test-data from population of salamandes

vetinal ganglion cells on lop MEA (purple dots, iecset photo)

will eatbrocellular braces, Highlight shevws intracellular action
ential in eme cell.

P TP,

* We have generated a flexible framework
for generating test data

Implemented as a Python module

Public release planned

Framewark employed to generate
realistic test data for a range of electrode
configurations
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Fiig. 9 Proprovessed test-data with spike ver
wuperimposed o the trajeciosies. (@) 1000 ms of recording
wilh spilie temphates. () 100 ms excerpt of (u). (e} Spike
Himes.
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Example LFP from multicompartment model

A V_l B
/ 1 nA
. ‘f

Basal excitation gives "inverted” LFP
pattern compared to apical excitation

Linden et al, Journal of Computational Neuroscience 2010
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Generated LFP depend on morphology

Pyramidal
(L5 cat V1):

Stellate
(L4 cat V1):

Linden et al, Journal of Computational Neuroscience 2010




LFP dipole from single L5 pyramidal neuron

1 Hz oscillatory current into apical synapse:

1 IHz input

36



Frequency dependence of LFP dipole

1 Hi input

100 Hz input

t=0ms

1 Hz

100 Hz

37



Intrinsic dendritic filtering of LFP

Transmembrane current
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Origin of low-pass filtering effect of LFP

* Depth profiles of return current:

trans-

membrane membrane

1 OO HZ area current

100 Hz
10 Hz
1 Hz

Effective current-dipole moment decreases with
increasing frequency due to cable properties of dendrites
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* Uncorrelated neuronal LFP sources: spatial reach ~ 0.2 mm

e Correlated neuronal LFP sources:

o spatial reach set by spatial range of correlations of synaptic input

o effect of correlations depends sensitively on synaptic input distribution
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e Poster on

«Frequency dependence
of spatial reach»,
Tuesday: P143

Simplified model of the frequency dependence
of the LFP’s spatial reach

Szymon teski*?, Henrik Lindén*?, Tom Tetzlaff**, Klas H. Pettersen?, Gaute T. Einevoll?
"Nencki Institute of Experimental Biology, Warsaw, Poland *Norwegian University of Life Sciences, As, Norway
*Royal Institute of Technology (KTH), Stockholm, Sweden *Research Center Jilich, Germany
Contact: s.leski@nencki.gov.pl

Reach of the local field potential

« Cylindrical population of neurons

« Fixed radius R =1 mm

* LFP recorded in the middle

* Which part of the population gives
95% of the LFP amplitude? (= reach)

* Morphologically detailed,
noise-driven neurons

Reach depends on cell morphology, stimulation patterns, input correlations Cin,
and also on the frequency band.

o
o —
o — )
WH ——
o —

The model of population LFP

Power of population LFP:
correlated (identical) contributions

. 2
f(R)= (/D f(rjvdr)

uncorrelated contributions

R
ga(R)=-£ f(r)’rdr

'
monopole ¥
ot

shape function f{r)

?
compound ampl. &

2 1o
we w' L 0
distance r distance r population radius 1t

Arbitrary correlations:

Power = [1 — co(w)]ga(w, 1) + colw)galw.r)

<y is the mean pairwise coherence between single cell’s contributions

Amplitude

Single-cell effects

Approximation of the single-cell LFP:

+ Dipole approximation far away (amplitude falls off as 1/r?)

* Less steep decay close to the cell (amplitude falls of as 1/,/F at the soma level)
s The kink - transition to the dipole zone

Layer 5 pyramidal cell, basal input
LFP dacay oKz 60 Hz Wbz Kok posiion ]
lw ks

0
10 00 1000 10 760 1000 10 700 1000 10 480 1000 0 1002003004050
Distance [ Frequency [H2)

* Low-pass filtering in the dendritic tree
* The only relevant effect in a population of uncorrelated cells (power = go)
* In that case: reach = 1.85 rink
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Coherence effects

10" T T T T
Mean LFP coherence:
+ Estimated from simulations e
« Not flat in the frequency domain g
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